

ГОУ ВПО

«Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого Министерства здравоохранения и социального развития Российской Федерации»

Кафедра терапевтической стоматологии

ПРОПЕДЕВТИЧЕСКАЯ СТОМАТОЛОГИЯ

Учебное пособие для аудиторной работы студентов 2 курса в 3 семестре обучающихся по специальности 060105 – «стоматология»

УДК 616.31:616-07 (075.8) ББК 56.6 П 78

Пропедевтическая стоматология: учебное пособие для аудиторной работы студентов 2 курса в 3 семестре обучающихся по специальности 060105 — «стоматология» / сост. И.В. Орешкин, Ю.В. Мишнев. — Красноярск: типография КрасГМУ, 2009. — 120 с.

Составители: к.м.н. И.В. Орешкин, Ю.В. Мишнев

Учебное пособие составлено в соответствии с Государственным образовательным стандартом высшего профессионального образования (2000), Основной образовательной программы подготовки врача-стоматолога (Москва, 2002), учебного плана специальности 060105 — «стоматология». Предназначено для работы на практических занятия со студентами 2 курса в 3 семестре по разделу «Материаловедение в терапевтической стоматологии» дисциплины «Пропедевтическая стоматология». Учебное пособие имеет тестовые задания и ситуационные задачи к каждой теме.

Рецензент: заведующий кафедрой стоматологии ИПО Красноярского государственного медицинского университета д.м.н., проф. В.В. Алямовский

Утверждено к печати ЦКМС КрасГМУ (протокол № 8 от 14.05.09)

СОДЕРЖАНИЕ

Тема № 1 Организация терапевтического отделения (кабинета)	
стоматологической поликлиники. Оснащение кабинета терапевтической стоматологии	4
Тема № 2 Стоматологические установки. Стоматологические	
наконечники, вращающиеся инструменты	12
Тема № 3 Стоматологические фотополимеризационные устройства	22
Тема № 4 Стоматологические инструменты. Асептика и антисептика	27
Тема № 5 Клиническая анатомия различных групп зубов. Зубная формула	36
Тема № 6 Гистологическое строение и физиология твердых тканей зубов	41
Тема № 7 Пломбировочные материалы для временных пломб	47
Тема № 8 Цементы. Цинк-фосфатные, поликарбоксилатные цементы	53
Тема № 9 Силикатные, силико-фосфатные цементы	59
Тема № 10 Стекло-иономерные цементы	63
Тема № 11 Самотвердеющие композиционные пломбировочные материалы	70
Тема № 12 Светоотверждаемые композиционные пломбировочные материалы	75
Тема № 13 Компомеры, ормокеры	82
Тема № 14 Адгезивные системы	86
Тема № 15 Металлические пломбировочные материалы	92
Тема № 16 Материалы для лечебных прокладок	98
Тема № 17 Инструменты для обработки пломб и реставраций	104
Тема № 18 Особенности окончательной обработки пломб	108
Тема № 19 Понятие о кариесе зубов. Классификация кариозных полостей по Блэку, атипичные кариозные полости	

Тема № 1: *ОРГАНИЗАЦИЯ ТЕРАПЕВТИЧЕСКОГО ОТДЕЛЕНИЯ* (КАБИНЕТА) СТОМАТОЛОГИЧЕСКОЙ ПОЛИКЛИНИКИ. ОСНАЩЕНИЕ КАБИНЕТА ТЕРАПЕВТИЧЕСКОЙ СТОМАТОЛОГИИ.

Значение изучения темы: нормативные документы, определяющие санитарногигиенические правила устройства, оборудования и оснащения стоматологического кабинета требуют их неукоснительного выполнения, определяют санитарно-гигиенический режим на рабочем месте, который может сказаться как на качестве оказываемой стоматологической помощи населению, так и на здоровье и работоспособности медицинского персонала. Определяя и понимая проблемы и задачи эргономики в стоматологии, врачу-стоматологу легче сориентироваться в выполнении необходимых условий, которые делают его труд высокопроизводительным, одновременно сохраняя его здоровье и работоспособность.

Цели занятия: на основе имеющейся информации по санитарногигиеническим требованиям, предъявляемым к устройству, оборудованию и оснащению терапевтического стоматологического кабинета (отделения), научиться определять основные требования к организации стоматологического кабинета, понимать проблемы и задачи эргономики в стоматологии. Для этого необходимо:

- знать санитарно-гигиенические требования, предъявляемые к организации терапевтического стоматологического кабинета;
- уметь подобрать для терапевтического стоматологического кабинета (отделения) основное стоматологическое оборудование.
- иметь представление об основных подразделениях, входящих в состав стоматологической поликлиники.
 - иметь представление о задачах и проблемах эргономики в стоматологии.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- оценка выполнения санитарно-гигиенических требований в терапевтическом отделении стоматологической поликлиники;
- проведение ознакомления с основными подразделениями, входящими в состав стоматологической поликлиники, разработка основных требований, предъявляемых к их планированию и обустройству;
 - решение ситуационных задач.
- 3. Подведение итогов:
 - -тестовый контроль.

Основные понятия и положения темы:

Терапевтический стоматологический кабинет должен иметь на основное стоматологическое кресло 14 m^2 площади и по 7 m^2 на каждое дополнительное. При наличии у дополнительного кресла универсальной стоматологической установки площадь на дополнительное кресло увеличивается до 10 m^2 . В кабинете может размещаться не более трех кресел с обязательным разделением рабочих мест врачей непрозрачными перегородками высотой до 1,5 метра.

Высота кабинета должна быть не менее 3 метров, а глубина при естественном освещении не должна превышать 6 метров. Поверхность стен, потолков,

полов и перегородок должна быть гладкой, легкодоступной для уборки и дезинфекции. Все углы и места соединения стен, потолка и пола должны быть закругленными, без карнизов и украшений.

Полы в стоматологическом кабинете должны настилаться рулонным поливинилхлоридным материалом (линолеумом) и не иметь щелей, для чего все швы свариваются.

В стоматологических кабинетах стены следует покрывать глазурованной плиткой или другими разрешенными водостойкими материалами (масляной краской) на полную высоту. Цвет поверхности стен в лечебных кабинетах должен быть светлых тонов с коэффициентом отражения не ниже 40%. Желательно использовать нейтральные светло-серые или бледно-голубые оттенки, не мешающие правильному различению окраски слизистых оболочек, цвета кожных покровов, крови, зубов, пломбировочных материалов и т.д.

Помещения, в которых устанавливают стерилизующее оборудование, должны иметь естественное и искусственное освещение, фрамуги или форточки в окнах и/или приточно-вытяжную вентиляцию. Пол изготавливается из токонепроводящих материалов, рабочая зона покрывается диэлектрическим резиновым ковриком. Внутренняя отделка помещения должна быть выполнена в соответствии с функциональным назначением: стены облицовываются глазурованной плиткой на высоту не менее 1,8 метра, а выше, окрашиваются водоэмульсионной или масляной краской.

В подвальных помещениях зданий могут размещаться только санитарнобытовые помещения для персонала, компрессорные установки и вентиляционные камеры.

Стоматологические кабинеты должны быть оснащены в зависимости от мощности поликлиники централизованной системой подачи сжатого воздуха, вакуума, кислорода. На подводках воды к универсальным стоматологическим установкам следует предусмотреть устройство вентилей для отключения подачи воды.

В лечебных кабинетах должны быть отдельные раковины для мытья рук персонала, оборудованные кранами с локтевым или ножным управлением, и специальные ванны для других производственных целей (мытья инструментов, инвентаря, оборудования и пр.).

Все лечебные кабинеты должны быть обеспечены аптечками с набором необходимых медикаментов для оказания экстренной и первой помощи, а также комплектом дезинфицирующих средств.

В зданиях стоматологических поликлиник следует предусматривать системы водяного отопления. Теплоносителем системы центрального отопления должна быть вода температурой +95°С. При проектировании систем отопления следует предусматривать возможность пофасадного их регулирования и отключения. Нагревательными приборами в системе центрального водяного отопления, как правило, должны быть чугунные радиаторы с гладкой поверхностью, допускающей легкую очистку, размещаемые только под окнами, за исключением угловых помещений.

В стоматологических отделениях и кабинетах следует предусматривать общеобменную приточно-вытяжную вентиляцию с кратностью воздухообмена 3 раза в час по вытяжке и 2 раза в час по притоку. Независимо от наличия приточно-вытяжной вентиляции должны быть легко открывающиеся фрамуги или форточки во всех помещениях.

Все помещения стоматологических терапевтических кабинетов должны иметь естественное освещение. Во всех вновь организуемых стоматологических лечебных учреждениях окна кабинетов должны быть ориентированы на северные направления во избежание значительных перепадов яркостей на рабочих местах за счет попадания прямых солнечных лучей, а также перегрева помещений в летнее время. В уже существующих учреждениях, имеющих неправильные ориентации, следует прибегать к затенению окон при помощи тентов, жалюзи и других подобных приспособлений.

Световой коэффициент (отношение остекленной поверхности к площади пола) в стоматологических кабинетах должен составлять 1:4 - 1:5, а в остальных помещениях - быть не ниже 1:8.

При установке стоматологических кресел в существующих кабинетах в два ряда при одностороннем естественном освещении следует пользоваться искусственным светом даже в дневное время во втором ряду кресел, и врачи должны периодически меняться своими рабочими местами. Кроме того, лечебные кабинеты должны иметь общее искусственное освещение, выполненное люминесцентными лампами или лампами накаливания. Светильники должны размещаться с таким расчетом, чтобы не попадать в поле зрения работающего врача. Люминесцентные светильники должны быть укомплектованы пускорегулирующими аппаратами с особо низким уровнем шума.

Для люминесцентного освещения во всех стоматологических кабинетах рекомендуется использовать лампы со спектром освещения, не искажающим цветопередачу, например, «ЛДЦ» (люминесцентные дневного света с исправленной цветопередачей) или «ЛХЕ» (люминесцентные холодного естественного света). Тип лампы указывается на ее цоколе.

Стоматологические кабинеты, кроме общего, должны иметь и местное освещение в виде рефлекторов на универсальных стоматологических установках на рабочих местах терапевтов. Уровень освещенности, создаваемый местным источником; не должен превышать уровень общего освещения более, чем в 10 раз, чтобы не вызывать утомительной для зрения врача световой переадаптации при переводе взгляда с различно освещенных поверхностей.

Все оборудование, инструментарий, стоматологические материалы и медикаменты, а также дезинфицирующие средства и отделочные материалы должны быть разрешены к применению в медицинских учреждениях России и иметь соответствующие сертификаты.

Эргономика в стоматологии

В последние годы эргономика и эргономические решения приобретают все большее значение во всех отраслях деятельности человека. Эргономика в стоматологии как комплексная дисциплина, обобщающая теоретические и практические рекомендации современных достижений, сформировалась в 1970 году.

Наиболее удачное определение эргономики дано В.М. Муниповым (1970): «Эргономика изучает функциональные возможности и особенности человека в трудовых процессах с целью создания таких условий, методов и организации трудовой деятельности, которые делают труд человека и высокопроизводительным и вместе с тем обеспечивают удобство и безопасность работающему, сохраняют его здоровье, способствуют духовному и физическому развитию человека. Предметом эргономики является трудовая деятельность человека, а объектом исследования - система «Человек - орудие труда (в широком смысле этого слова) - производственная среда».

Основные эргономические задачи в области стоматологии сформулированы Г.М. Иващенко, Т.В. Никитиной (1972):

- обеспечение максимального удобства работы врача (медицинской сестры, зубного техника);
 - организация рабочего места врача (медицинской сестры, зубного техника);
 - обеспечение комфорта в лечебных кабинетах и других помещениях;
- снижение психологической и эмоциональной нагрузок на врача и обслуживающий персонал;
- снижение физиологической нагрузки на врача (медицинскую сестру, зубного техника);
- правильная организация режима труда и отдыха;
- разработка методов работы с кадрами.

Эргономические рекомендации в области разработки современных технических средств в стоматологии

Разработка новых современных технических средств для стоматологии с каждым годом все шире осуществляется на основе эргономических рекомендаций.

Основным техническим оснащением врача-стоматолога следует считать бормашину, без которой невозможно лечение самого распространенного заболевания - кариеса зубов. Основной путь развития идет по пути создания микробормашин по типу воздушных турбин и микроэлектробормашин.

Несколько сложнее оказалось изготовление микро-электробор машины (микромоторов). Однако они тяжелее турбин и более «капризны» в эксплуатации и, следовательно, не отвечают еще эргономическим требованиям.

Рационализировались материалы, конструкция привода, энергетика стоматологических установок, появилось жидкостное охлаждение. Однако суть остается прежней - кинетическая энергия, передаваемая инструментом зубу, избыточна и распределяется по обрабатываемой поверхности неравномерно. Воздействие на ткани зуба кинетической энергии вращающихся инструментов, к которым пациенты традиционно относятся с опаской, долгое время изучается специалистами.

Вторым по значимости техническим оснащением врача является стоматологическое кресло, которому эргономисты уделяют серьезное внимание. В настоящее время основные эргономические требования к креслу для пациента уже отработаны и хорошо известны конструкторам. Отработаны также и эргономические положения к правилам эксплуатации и рабочим позам врача и его помощника.

На основании эргономических исследований стоматологические установки, особенно в последние годы, стали быстро совершенствоваться как по техническому решению, так и по функциональным качествам. В зависимости от их назначения и эргономических рекомендаций предлагаются различные конструкции установок, которые отличаются по внешнему виду, размещению функциональных узлов, по способу расстановки последних в кабинете и т.д.

Если большинство стоматологических установок отличалось единой комплексностью и стационарностью, т.е. монтировалось неподвижно к полу, то современные установки чаще расчленяются на два блока, которые условно называются «врач» и «ассистент». Блок «врач», как правило, делается на роликах, что обеспечивает его маневренность, чем обеспечивается подводка всех необходимых технических средств непосредственно к врачу, в каком бы положении он не находился по отношению к пациенту. Блок «врач» оснащен небольшим столиком для инструментов, микромотором, турбиной и «пистолетом» двойного действия (воздух, вода). В комплектацию современных стоматологических установок в настоящее время входят фотополимеризаторы, скайлеры. Питание этого блока (воздух, вода, электроэнергия) производится через гибкий шланг. Блок «ассистент» делается в двух вариантах - стационарный и подвижный на роликах. В обоих случаях он комплектуется из небольшого столика для необходимого инструментария, пистолета двойного действия, слюноотсоса, пылесоса, плевательницы, стакана для воды.

В связи с тем, что установки усложняются, их стали называть «системами».

Одним из элементов оснащения работего места врача-стоматолога является стул стоматолога. Стул должен быть устойчивым (для этого его нижняя часть должна иметь определенную массу и опираться на 5 или 6 роликов), легко передвигаться, при нагрузке ролики должны автоматически фиксироваться. Сиденье стула должно быть круглым и с помощью рычага или педали легко подниматься и опускаться, спинка стула - дугообразной и перемещаться вокруг поясницы врача для опоры спереди или для локтей рук.

Стоматологические инструменты весьма многочисленны и рассчитаны на различные манипуляции. Разработка и конструирование инструментов и оборудования требует обязательного эргономического исследования и соответствующих рекомендаций. Эргономика позволяет находить надлежащие конструкции ручных инструментов, их форму, размеры, массу, материал соответствующего качества, из которого они изготовляются. Особое внимание уделяется так называемым вращающимся инструментам: борам, фрезам, абразивам. Большое внимание уделяется также разработке инструментов для эндодонтии. Однако даже инструмент высокого качества по общим эргономическим требованиям может оказаться неудобным в эксплуатации и явиться причиной потери рабочего времени врача и его помощников.

Таким образом, в настоящее время стоматологическое оборудование для оснащения рабочего места врача создается на базе высокоразвитой, сложной техники, требующей комплексного научно-технического подхода к ее конструированию и производству.

Задания на уяснение темы занятия, методики вида деятельности. Контрольные вопросы:

- 1. Какова структура стоматологической поликлиники?
- 2. Какие подразделения входят в состав терапевтического отделения стоматологической поликлиники?
- 3. Какие санитарно-гигиенические требования предъявляются к организации стоматологического кабинета?
- 4. Перечислите оборудование стоматологического кабинета.
- 5. Какова схема расположения оборудования в стоматологическом кабинете?
- 6. Назовите специфические требования и оборудование стоматологического кабинета при работе с амальгамой.
- 7. Какие проблемы решает эргономика в стоматологии?
- 8. С какими производственными вредностями сталкивается врач стоматолог в повседневной практике?
- 9. Каковы меры защиты врача стоматолога от производственных вредностей?

Тестовые задания

- 1. Минимально необходимая площадь для организации кабинета терапевтической стоматологии составляет:
- a) 10м2
- б) 12м2
- в) 14м2
- г) 20 м2
- 2. Глубина кабинета терапевтической стоматологии должна быть не более:
- a) 3 M
- б) 4 м
- B) 6 M
- г) 7 м
- д) 8 м
- 3. Шкаф для хранения ядовитых веществ в кабинете терапевтической стоматологии маркируется буквой:
- a) A
- б) В
- в) C
- **R** (1
- 4. Оптимальным температурным режимом для работы в кабинете терапевтической стоматологии является:
- a) 16-18°
- б) 18-20°
- в) 20-22°
- г) 24-26°
- 5. Характеристика света наиболее важная для переадаптации зрения стоматолога:
- а) уровень освещенности

- б) спектр излучения
- в) равномерность в разных точках помещения
- г) отсутствие блесткости
- 6. В положении сидя стоматолог проводит:
- а) 40% рабочего времени
- б) 50% рабочего времени
- в) 60% рабочего времени
- г) 90% рабочего времени
- 7. Для оказания стоматологической помощи больным с ограниченными возможностями передвижения на дому наиболее целесообразно использовать установку:
- а) переносную автономную
- б) переносную подключаемую
- в) передвижную
- г) стационарную
- 8. Для обеспечения качества работы врача-стоматолога современными материалами целесообразно использовать компрессор:
- а) масляный
- б) безмасляный
- в) тип компрессора не имеет значение
- г) полумасляный
- 9. Минимально необходимая площадь для организации дополнительного рабочего места, оснащенного универсальной стоматологической установкой в кабинете терапевтической стоматологии, составляет:
- a) 5_M2
- б) 7м2
- в) 10 м2
- г) 12м2
- 10. Высота кабинета терапевтической стоматологии должна быть не менее:
- а) 2,5 м
- б) 3,0 м
- в) 3,5 м
- г) 4,0 м
- 11. Шкаф для хранения материалов и инструментов в кабинете терапевтической стоматологии маркируется буквой:
- a) A
- б) В
- в) C
- г) не маркируется
- 12. Чем должны быть покрыты стены в кабинете терапевтической стоматологии:
- а) краской обеспечивающей возможность влажной уборки
- б) стеновыми панелями из ДВП
- в) стеновыми панелями из пластика

- г) верно все перечисленное
- 13. Согласно санитарным нормам соотношение площади окон к площади пола в кабинете терапевтической стоматологии может составлять:
- a) 1:4 1:5
- б) 1:6 1:7
- B) 1:9-1:8
- г) 1:1
- 14. Для обеспечения нормальной работоспособности зрительного анализатора врача-стоматолога наиболее важна следующая характеристика света:
- а) уровень освещенности
- б) спектр излучения
- в) равномерность в разных точках помещения
- г) отсутствие блесткости
- 15. Коэффициент отражения света с поверхностей стен в стоматологическом кабинете не должен быть ниже (%):
- a) 10
- б) 20
- в) 30
- r) 40
- д) 50
- 16. Окна в стоматологическом кабинете ориентируют на:
- а) юг
- б) север
- в) восток
- г) запад
- д) юго-запад
- 17. Согласно современным санитарно-эпидемиологическим требованиям количество установок в кабинете терапевтической стоматологии не должно превышать:
- а) двух
- б) трех
- в) четырех
- г) пяти
- 18. Минимально необходимая площадь для организации дополнительного кресла, не оснащенного универсальной стоматологической установкой, в кабинете терапевтической стоматологии составляет:
- a) 5_M2
- б) 7м2
- в) 10м2
- г)12м2
- 19. Пол в кабинете терапевтической стоматологии может быть покрыт:
- а) линолеумом
- б) мраморно-гранитным составом
- в) ламинированными панелями

- г) верно все перечисленное
- 20. Сколько раковин рекомендуется устанавливать в кабинете терапевтической стоматологии:
- а) одну
- б) две
- в) не менее трех
- г) по количеству кресел

Задачи для контроля усвоения темы

- 1. Стоматологический кабинет площадью 12 м² оборудован в полуподвальном помещении жилого дома, отсутствует приточно-вытяжная вентиляция и естественное освещение. Какие санитарно-гигиенические нормы, предъявляемые к организации стоматологического кабинета, нарушены?
- 2. Стоматологический кабинет имеет площадь 18 м², пол кабинета покрыт поливиниловой плиткой, стены окрашены водо-эмульсионной краской в бледно-зеленый цвет, световой коэффициент 1:5. Какие санитарногигиенические нормы, предъявляемые к организации стоматологического кабинета, нарушены?
- 3. Стоматологический кабинет имеет площадь 14 м²: установлено 2 стоматологических кресла, пол покрыт линолеумом, световой коэффициент 1:8. Какие санитарно-гигиенические нормы, предъявляемые к организации стоматологического кабинета, нарушены?

Список тем по УИРС:

- 1. Научная организация труда и вопросы эргономики в работе врачастоматолога.
- 2. Санитарно-гигиенические нормы и техника безопасности для медицинского персонала и пациентов клиники терапевтической стоматологии.

Тема №2: *СТОМАТОЛОГИЧЕСКИЕ УСТАНОВКИ. СТОМАТОЛОГИЧЕСКИЕ НАКОНЕЧНИКИ, ВРАЩАЮЩИЕСЯ ИНСТРУМЕНТЫ.*

Значение изучения темы: регулярное внедрение современных технологий, разнообразие стоматологического оборудования, приводит к необходимости четкой его систематизации, а также понимания существенных отличий, достоинств и недостатков отдельных его представителей. В связи с этим, важными являются сведения об их устройстве, назначении и правилах эксплуатации.

Цели занятия: на основе знаний о разновидностях стоматологических установок научить проводить их систематизацию, определять положение в систематизации вновь разрабатываемых стоматологических установок и наконечников.

Для этого необходимо:

- знать устройство и классификацию стоматологических наконечников,
- уметь использовать в практической работе основные функции стоматологи-

ческих установок и стоматологических наконечников,

- иметь представление об устройстве и предназначении базовой и дополнительной комплектаций стоматологических установок.
- иметь представление о правилах эксплуатации стоматологических наконечников.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- оценка, представленного на рекламном проспекте образца стоматологической установки,
- проведение сравнительной характеристики турбинного и углового наконечников,
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Стоматологическая установка- это комплекс электрических, механических и гидравлических элементов, преобразующих внешнюю энергию в энергию стоматологических инструментов и предназначенный для обеспечения необходимых условий проведения стоматологического лечения.

Функциональная классификация стоматологических установок:

- 1. По мобильности (определяет размещение пациента и устанавливает диапазон применения установки):
- переносная автономная,
- переносная подключаемая,
- передвижная
- стационарная.
- 2. По комплектности:
- полнокомплектная,
- неполнокомплектная (отсутствует один или несколько основных элементов).
- 3. По количеству установленных инструментов, может быть меньше максимально возможного количества:
- на один инструмент,
- на два инструмента,
- на три инструмента,
- на четыре и более инструментов,
- на модульно увеличиваемое количество инструментов,
- 4. По типу подсветки на рукавах
- без подсветки,
- подсветка на одном рукаве,
- подсветка на нескольких рукавах.
- 5. По типу штатного микромотора:
- воздушный микромотор (наличие подсветки зависит от типа воздушного рукава),

- электрический микромотр без подсветки,
- электрический микромотор с подсветкой.
- 6. По штатной системе эвакуации жидкости из полости рта:
- слюноотсос,
- слюноотсос и инжекторный пылесос,
- слюноотсос (инжекторный или вакуумный) и вакуумный пылесос.

Основные элементы стоматологической установки и основные параметры их определяющие:

I. *Кресло пациента* - предназначено для размещения пациента в непосредственной близости от инструментов.

В современных установках наиболее распространенны два основных типа привода кресла в действие:

- гидравлический,
- электромеханический.

Сложно говорить о преимуществах одного типа привода перед другим, отметим, что гидравлический привод создает меньше шума в работе, а электромеханический при выходе из строя сохраняет некоторые из своих функций.

Подвижность кресла пациента и основных элементов его конструкции позволяет осуществлять:

- его вертикальное перемещение,
- поворот кресла вокруг вертикальной оси,
- смену угла наклона спинки кресла (до 3-5 градусов при лечении в положении «лежа»),
 - поворот сидения на 90 градусов,
 - сгибание сидения в области колен пациента,
- изменение положения подголовника (выдвижение вдоль продольной оси кресла, поворот для запрокидывания головы, поворот головы пациента к врачу за счет движения подголовника),
- регулирование местоположения подлокотников (съемные и/или подвижные).

Удобство расположения элементов управления креслом во многом определяет эргономичность процесса лечения в целом.

Большинство стоматологических установок оснащаются системой запрограммированных и программируемых положений кресла, которая значительно улучшает эргономические показатели работы.

Существует автоматическая системы защиты установки (специальные микровыключатели), которая срабатывает при попадании препятствия под различные части установки.

- П. Блок врача основной элемент, определяющий эргономику лечебного процесса, он может быть:
- 1. мобильным;
- 2. размещенным в мебельном блоке;
- 3. размещенным на установке:
- с верхней подачей инструментов,

- с нижней подачей инструментов.

Инструменты подсоединяются к установке с помощью рукавов двух типов:

- 1. Воздушные:
- Борден 2 (Borden 2),
- Мидвест 4 (Midwest 4),
- Мидвест Люкс (2 электроконтакта)
- 2. Электрические.
- III. Блок ассистента элемент установки, основная функция которого обеспечение работы врача и лечебного процесса (второстепенных и вспомогательных процедур). Блок ассистента состоит из гидроблока и систем отсоса, также могут быть расположены дополнительно вспомогательные рабочие инструменты и пульт управления различными функциями установки. Основными элементами гидроблока являются: чашка плевательницы, смыватель и наполнитель стакана. Системы эвакуации по основным принципам функционирования делятся на:
- инжекторные (воздушные и водяные),
- вакуумные (применение создаваемого компрессором напряжения).
- IV. Светильник операционный предназначен для внешнего освещения операционной зоны. В современных операционных осветителях обычно применяются галогеновые лампы. Наиболее ответственная часть лампы отражатель (рефлектор). Его характеристики во многом определяют спектр, направленность светового потока, четкость границы освещаемой зоны.
- V. *Педаль врача* в разных типах установок может контролировать следующие функции:
- управление инструментами,
- управление креслом пациента,
- продувка сухим воздухом из наконечника.

Одно из основных свойств педали - простота в управлении, т. к. иногда врачу в процессе лечения приходится отвлекаться, чтобы не ошибиться в выборе нажимаемого элемента.

Стационарная стоматологическая установка должна быть оснащена компрессором, стулом врача и стулом пациента. Также для расширения функциональных возможностей оборудования на нее могут быть установлены системы диагностики и визуализации.

Компрессор является одним из основных элементов оборудования стоматологического кабинета или клиники, он создает избыточное давление атмосферного воздуха и направляет воздух в различные системы стоматологической установки. Существует два типа компрессоров - масляные и безмасляные. Для получения воздуха необходимого качества компрессоры оснащаются отделителями влаги и осушителями воздуха. Сухой и не содержащий масло воздух - одно из основных условий долговременной работы стоматологической установки.

Основные требования к эксплуатации стоматологических установок:

- 1. Оборудование должно быть подключено через стабилизатор напряжения.
- 2. В процессе уборки нельзя располагать предметы и элементы установки под

подвижные части установки.

- 3. При длительном перерыве в работе необходимо перекрывать подключаемые системы водоснабжения, подачи сжатого воздуха и электроснабжения.
- 4. Необходимо использовать чехлы для защиты обшивки кресла пациента.
- 5. При применении компрессора необходимо ежедневно сливать конденсат, а при наличии системы автономного слива необходимо ежемесячно проверять ее состояние.
- 6. Должен проводиться ежедневный контроль фильтров отсоса и слива плевательницы, нельзя допускать попадания волокнистых материалов в плевательницу.
- 7. После обработки наконечников, особенно если рукава расположены снизу, необходимо тщательно удалить излишки смазки.

Если в клинике работает 3 и более установок, желательно иметь инструменты для их диагностики и регулировки. Основной мерой профилактики неисправностей установок можно считать ежемесячные профилактические осмотры оборудования инженерно техническим персоналом.

Стоматологические наконечники относятся к разряду механизированных инструментов и являются деталями стоматологической установки, предназначенными для закрепления в них режущих инструментов и передачи вращательного движения от рукава установки к режущему инструменту.

Классификация стоматологических наконечников:

- 1. Высокоскоростные (турбинные).
- 2. Низкоскоростные (микромотор).
- 3. Эндодонтические.
- 4. Профилактические.

Турбинный наконечник - инструмент, использующий для приведения во вращение бора поток сжатого воздуха, который вращает ротор в головке наконечника. Ротор, в свою очередь, вращает вставленный в наконечник бор, который удерживается цанговым устройством, приводимым в действие либо нажатием кнопки, либо специальным ключом.

Классификация турбинных наконечников:

- 1. По типу разъема:
- Borden 2,
- Midwest 4,
- другие типы разъемов.
- 2. По наличию системы подсветки:
- с системой фиброоптики,
- без системы фиброоптики.
- 3. По особенностям системы охлаждения:
- с одноканальным спреем,
- с двухканальным спреем,
- с трехканальным спреем,
- с четырехканальным спреем.
- 4. По типу фиксации на рукаве:
- резьбовое соединение.

- быстросъемное соединение («мультифлекс», Ротоквик).
- 5.По особенностям системы фиксации вращающихся инструментов:
- «под ключ»,
- «кнопочные».
- 6.По типу антисептических стандартов:
- классические,
- с системой «анти-СПИД».

Низкоскоростные стоматологические наконечники приводятся в движение электромотором либо пневмомотором. Внешне эти наконечники похожи на высокоскоростные турбинные (только несколько крупнее), однако скорость их вращения составляет от 10000 до 70000 об/мин. Для препарирования дентина, эндодонтических манипуляций, полирования пломбировочных материалов необходимы более низкие скорости и, соответственно, большая, чем у турбины, мощность вращения инструментов. Долгое время для этих целей использовалась электрическая бормашина, но более экономичными являются воздушные (пневматические) микромоторы.

Классификация низкоскоростных стоматологических наконечников:

- 1. По принципу передачи вращающего момента от мотора:
- для «жестких» и «гибких» рукавов,
- для микромоторов.
- 2. По типу фиксирующихся в них вращающихся инструментов:
- прямые,
- угловые.
- 3. По наличию подсветки:
- с системой фиброоптики,
- без системы фиброоптики.
- 4. По наличию системы охлаждения:
- без системы охлаждения,
- с внешней системой охлаждения,
- с внутренней системой охлаждения,
- 5. По скорости вращения инструментов:
- с неизменяемым передаточным числом (1:1),
- с изменяемым передаточным числом:
- а) с понижающим вращательным моментом,
- б) с повышающим вращательным моментом
- 6.По особенностям системы фиксации вращающихся инструментов:
- с поворотным замковым типом фиксации,
- кнопочным.

Классификация эндодонтических наконечников:

- 1. По типу штатных движений эндодонтичесих инструментов:
- с полностью вращательными движениями,
- с частично вращательными движениями,
- с возвратно-поступательными движениями.

- 2. По типу фиксирующихся в них эндодонтических инструментов:
- для эндодонтических инструментов, выполненных под угловой тип наконечника,
- для эндодонтических инструментов ручного типа.

Для снятия зубных отложений кроме использования обычных применяют специальные наконечники (профилактические), которые отличаются между собой частотой колебаний, подаваемой на кончик рабочего инструмента:

- в ультразвуковом диапазоне:
- а) с частотой 16-20 кГц, создаваемой магнитострикционным преобразователем,
- б) с частотой колебаний до 45 кГц, создаваемой в пьезоэлектрических наконечниках.
- в звуковом диапазоне с частотой от 2 до 7кГц

Классификация вращающихся стоматологических инструментов по назначению:

- 1. Инструменты для препарирования твердых тканей зубов.
- 2. Инструменты для окончательной обработки пломб.
- 3. Инструменты для профилактической стоматологии.
- 4. Инструменты для эндодонтии.

К инструментам для препарирования твердых тканей зубов относятся боры. *Классификация боров:*

- 1. Стальные, алмазные (мелкозернистые, средней зернистости, крупнозернистые), твердосплавные (карбидные).
- 2. Для прямого, углового или турбинного наконечников.
- 3. Для обработки краев эмали (финиры).
- 4. По форме рабочей поверхности:
- *шаровидные* (для препарирования кариозных полостей, вскрытия полости зуба),
- *грушевидные* (для препарирования относительно больших кариозных полостей),
- *колесовидные* (для создания ретенционных пунктов, раскрытия фиссур на окклюзионных поверхностях и удаления нависающих краев в резцах, срезания металлических коронок),
- *конусные фиссурные* (для формирования стенок полостей под углом, превышающим 90 градусов),
 - обратноконусные (для препарирования кариозных полостей),
- *цилиндрические фиссурные* (с закругленным концом, торцевые) для формирования стенок полости под углом 90 градусов и для формирования ретенционных пунктов,

Существует около 300 разновидностей формы боров, выше перечислены лишь основные.

К инструментам для окончательной обработки пломб относятся:

1. Карборундовые фасонные головки (арканзаский камень).

- 2. Резиновые абразивные формы (для композитов, амальгам, керамики, универсальные, комбинированные).
- 3. Абразивные диски.
- 4. Микрощеточки (с абразивным наполнителем, без абразивного наполнителя).

К вращающимся инструментам для профилактической стоматологии относятся:

- 1. Щеточки (стандартные, мини).
- 2. Резиновые чашечки (различной степени жесткости и форм).

Классификация вращающихся инструментов для эндодонтии:

- 1. Эндодонтические инструменты со стандартным держателем (хвостовиком) для закрепления в угловом или прямом наконечниках.
- 2. Эндодонтические инструменты с держателем двойного типа (для ручной и механизированной обработки корневых каналов).

Задания на уяснение темы занятия, методики вида деятельности. Тестовые задания.

- 1). Минимально необходимая площадь для организации кабинета терапевтической стоматологии составляет:
 - a) 10 m^2
 - 6) $12м^2$
 - B) 14m^2
 - Γ) 20 M^2
- 2). Глубина кабинета терапевтической стоматологии должна быть не более:
 - a) 3 m
 - б) 4 м
 - в) 6 м
 - r) 7 м
 - д) 8 м
- 3). Шкаф для хранения ядовитых веществ в кабинете терапевтической стоматологии маркируется буквой:
 - a) A
 - б) В
 - в) C
- 4). Оптимальным температурным режимом для работы в кабинете терапевтической стоматологии является:
 - a) 16-18°
 - б) 18-20°
 - в) 20-22°
 - г) 24-26°
- 5). Для недопущения постоянной переадаптации зрения наиболее важна следующая характеристика света:
 - а) уровень освещенности
 - б) спектр излучения
 - в) равномерность в разных точках помещения
 - г) отсутствие блесткости

- 6). Сколько раковин рекомендуется устанавливать в кабинете терапевтической стоматологии?
 - а) одну
 - б) две
 - в) не менее трех
- 7). Для оказания стоматологической помощи больным с ограниченными возможностями передвижения на дому наиболее целесообразно использовать установку:
 - а) переносную автономную
 - б) переносную подключаемую
 - в) передвижную
 - г) стационарную
- 8). Для обеспечения качества работы врача-стоматолога современными материалами целесообразно использовать компрессор:
 - а) масляный
 - б) безмасляный
- 9). Минимально необходимая площадь для организации дополнительного рабочего места, оснащенного универсальной стоматологической установкой в кабинете терапевтической стоматологии, составляет:
 - a) 5m^2
 - 6) $7м^2$
 - B) 10 m^2
 - Γ) 12 M^2
- 10). Высота кабинета терапевтической стоматологии должна быть не менее:
 - a) 2,5 M
 - б) 3,0 м
 - в) 3,5 м
 - г) 4.0 м
- 11). Шкаф для хранения материалов и инструментов в кабинете терапевтической стоматологии маркируется буквой:
 - a) A
 - б) В
 - в) C
 - г) не маркируется
- 12). Чем могут быть покрыты стены в кабинете терапевтической стоматологии?
 - а) масляной краской
 - б) стеновыми панелями из ДВП
 - в) стеновыми панелями из пластика
 - г) краской, обеспечивающей возможность влажной уборки стен
- 13). Согласно санитарным нормам соотношение площади окон к площади пола в кабинете терапевтической стоматологии может составлять:
 - a) 1:4
 - б) 1:5

- в) 1:6
- r) 1:7
- 14). Для обеспечения нормальной работоспособности зрительного анализатора врача-стоматолога наиболее важна следующая характеристика света:
 - а) уровень освещенности
 - б) спектр излучения
 - в) равномерность в разных точках помещения
 - г) отсутствие блесткости
- 15). Вращение бора в высокоскоростном наконечнике обеспечивается путем:
 - а) подачи сжатого воздуха в систему наконечника
- б) изменения передаточных чисел в шестереночном механизме наконечника
 - в) увеличения скорости вращения ротора микромотора
- 16). Для работы в корневых каналах зубов должен использоваться следующий тип наконечника:
 - а) прямой
 - б) угловой
 - в) турбинный
 - г) эндодонтический
- 17). Согласно современным санитарно-эпидемиологическим требованиям количество установок в кабинете терапевтической стоматологии не должно превышать:
 - а) двух
 - б) трех
 - в) четырех
 - г) пяти
- 18). Минимально необходимая площадь для организации дополнительного кресла, не оснащенного универсальной стоматологической установкой, в кабинете терапевтической стоматологии составляет:
 - a) 5m^2
 - 6) $7м^2$
 - $B) 10 M^2$
 - Γ) 12m^2
- 19). Пол в кабинете терапевтической стоматологии может быть покрыт:
 - а) линолеумом
 - б) мраморно-гранитным составом
 - в) специальной глазированной плиткой
 - г) любым материалом

Задачи для контроля усвоения темы.

1. При подключении стоматологической установки к электрической сети не включается светильник, не работает турбинный наконечник и электромотор. Что в первую очередь надо проверить?

- 2. При нажатии на пускатель турбинного наконечника воздух подается, но бор не вращается. Возможные причины?
- 3. При включении электрического микромотора бор в наконечнике не вращается, микромотор не крутит. Возможные причины?

Список тем по УИРС:

1. Стоматологические установки. Современные подходы к комплектации и эксплуатации.

Тема №3 СТОМАТОЛОГИЧЕСКИЕ ФОТОПОЛИМЕРИЗАЦИОННЫЕ УСТРОЙСТВА. КЛАССИФИКАЦИЯ, ОСОБЕННОСТИ УСТРОЙСТВА И ЭКСПЛУАТАЦИИ.

Значение изучения темы: существование обширного рынка стоматологических фотополимеризационных устройств, постоянное появление новых образцов, а также совершенствование представлений об устройствах, используемых в клинической практике, приводит к необходимости постоянного обновления информации.

Цели занятия: на основе знаний о характеристике светового потока, генерируемого стоматологическими фотополимеризационными устройствами (СФУ), научиться проводить полимеризацию композиционного материала с помощью СФУ на фантомах. Для этого необходимо:

- знать основные узлы стоматологического фотополимеризационного устройства (СФУ);
- знать характеристику светового потока, генерируемого СФУ;
- знать основные параметры фотополимеризации композиционных материалов;
- уметь проводить полимеризацию композиционного материала с помощью $C\Phi Y$.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
 - ознакомление с аннотациями источников галогенового света;
- отработка техники отсвечивания композиционных пломбировочных материалов на фантомах;
 - решение ситуационных задач.
- 3. Подведение итогов:
 - тестовый контроль.

Основные понятия и положения темы:

Светоотверждаемые материалы первых поколений активировались от ультрафиолетового облучения. Было установлено, что оно опасно для здоровья пациента и врача, и что действует на материал только поверхностно. Современные светоотверждаемые композиты чувствительны к видимому свету с длинной волны 350-600 нм.

Стоматологические фотополимеризационные устройства (СФУ) состоят из следующих основных узлов:

- блока питания,
- блока управления процессом полимеризации,
- галогеновой лампы накаливания,
- селективного светофильтра,
- световода,
- . системы отвода тепла.

В качестве дополнительных узлов можно назвать защитные экраны и колпачки, приборы контроля интенсивности светового потока - радиометры.

Блок управления процессом полимеризации позволяет выполнять следующие функции: устанавливать время выключения полимеризационного света через 10 - 90 секунд, включать ражим непрерывной полимеризации.

Галогеновая лампа накаливания является одним из важнейших узлов СФУ, у большинства фотополимеризаторов она

имеет мощность 75 Вт. Для пропускания света в диапазоне 400-500 нм фотополимеризаторы имеют селективный светофильтр.

Световод фотополимеризатора предназначен для подведения светового потока к полимеризуемому материалу. Выпускаются следующие разновидности световодов:

- стандартные, изогнутые под углом,
- прямые- большого диаметра,
- дуал-световоды, для одновременного подведения светового потока к разным поверхностям зуба,
- турбо-световоды, для усиления мощности светового потока,
- мини-световоды,
- гибкие световоды,
- одноразовые световоды для пациентов группы риска.

Система отвода тепла большинства СФУ обеспечивается вентилятором принудительного охлаждения. Система принудительного охлаждения может работать по двум принципам:

- работать постоянно с момента включения СФУ в сеть;
- включаться и выключаться при достижении температуры в корпусе СФУ установленных значений.

Для оценки состояния светофильтра и световода СФУ большое значение имеют две основные *характеристики полимеризационного света*:

- 1. Энергетическая светимость плотность мощности светового потока (ПМСП), отвечающая за полноту процесса полимеризации пломбировочного материала;
- 2. Инфракрасная составляющая *плотность мощности теплового потока* (ПМТП), чрезмерная величина которой может привести к тепловому повреждению пульпы.

Общепринятыми оптимальными показателями ПМСП считают величину не менее 300 мВт/см^2 , а ПМТП не должна превышать 50 мВт/см^2 . Необходимо, как минимум, еженедельно проверять параметры СФУ, по результатам которых проводить сервисное обслуживание.

Некоторые модели СФУ: «Астролюкс» (Россия), «Aurora-200», «Optilux-

150», «Polofil Lux», «Megalux CS».

Полимеризация осуществляется в две стадии: светлая реакция, проходящая во время освещения, и тёмная реакция, продолжающаяся после прекращения освещения как минимум 24 часа. Считается, что во время светлой реакции отверждение происходит на 50%, на 40% в последующие 24 часа и на 10% в течение следующих 10 дней.

При фотополимеризации композиционного материала световод СФУ должен быть максимально приближен к пломбе, но не касаться её. Максимальное расстояние от световода до пломбы -3 мм.

Новое поколение фотополимеризаторов

Появились альтернативные источники синего света — светодиоды «Light Emitting Diode» (LED), спектр излучения которых удивительным образом совпадает со спектром поглощения камфорхинона. Обратите внимание, что в отличие от спектра излучения галогенной лампы, спектр LED-излучателя не имеет ни тепловой, ни ультрафиолетовой составляющих — вся энергия излучения лежит в диапазоне синего света и участвует в процессе фотополимеризации. При этом срок службы светодиодов составляет десятки тысяч часов работы без потери энергетических параметров.

Преимущества использования в качестве источника света LED-излучателя:

- спектр излучения LED практически совпадает со спектром поглощения камфорхинона высокий КПД
 - не требуется периодическая замена излучателя;
- стабильность светового потока во времени;
- спектр излучения не имеет тепловой составляющей, что исключает возможность перегрева твердых тканей зуба, периодонта, а также фотокомпозитного материала;
 - отсутствие вентилятора и, как следствие, шума и вибрации;
- низкая потребляемая мощность возможность применения аккумуляторов, беспроводных конструкций.

Недостатки в LED-лампах

- Из-за сужения спектра излучения светодиода по отношению к нормированному на сегодняшний день спектру для галогенных ламп возможно повышение требований к чистоте фотоинициатора (камфорхинона). Однако для основных фирм-изготовителей композиционных материалов это не проблема;
- необходимость замены аккумулятора через 1-1,5 года эксплуатации особенность беспроводной конструкции;
- относительно высокая цена, постоянно уменьшающаяся по мере совершенствования технологии производства.
- Спектр излучения галогенной лампы несколько шире (400-500 нм), чем светодиодов (460-475нм).

Задания на уяснение темы занятия, методики вида деятельности: Контрольные вопросы.

- 1. Назначение СФУ
- 2. Характеристики основных узлов СФУ.

- 3. Основные параметры СФУ для качественной полимеризации материала
- 4. Факторы, влияющие на процесс полимеризации.
- 5. Функция «плавного старта».

Тестовые задания.

- 1) B число обязательных конструктивных узлов $C\Phi V$ входят:
 - а) блок питания
 - б) галогеновая лампа накаливания
 - в) блок аккумуляторных батарей
 - г) селективный светофильтр
 - д) принудительная система отвода тепла
 - е) световод
- 2) Световод СФУ может быть использован для:
 - а) термотерапии при заболеваниях пародонта
 - б) калибровки параметров СФУ
 - в) полимеризации светоотверждаемых пломбировочных материалов
 - г) выявления участков деминерализации твердых тканей зубов
- 3) Прибор для контроля интенсивности светового потока, генерируемого СФУ, называется:
 - а) рН метр
 - б) фотометр
 - в) радиометр
 - г) спектрометр
- 4) Режим непрерывной полимеризации у ряда СФУ подразумевает:
- а) обязательное наличие счетчика времени полимеризационного процесса
- б) периодическое включение звукового сигнала при проведении полимеризации
- в) включение вентилятора только при достижении критической температуры полимеризации
- 5) Функция «плавного старта» полимеризации у СФУ обеспечивает:
 - а) экономию рабочего времени врача
 - б) оптимальный режим полимеризационного процесса
- в) 100-процентную защиту от опасности перегрева пульпы в процессе полимеризации
- 6) К повреждению селективного светофильтра СФУ могут привести:
 - а) длительный период эксплуатации СФУ
 - б) чрезмерно активная фиксация световода у ряда моделей СФУ
 - в) использование коротких периодов полимеризации материалов
 - г) ротация световода у всех моделей СФУ
- 7) Для чего предназначены прямые световоды большого диаметра?
 - а) для полимеризации материала в небольших полостях
 - б) для полимеризации материалов в ортодонтической практике
 - в) только для диагностики кариеса
- 8) Функция автоматического повышения мощности светового потока при запотевании концевой части световода заложена в конструкцию:
 - a) «Opti1ux-150»

- б) «Elipar Highlight»
- 9) По типу энергопитания СФУ подразделяются на:
 - а) питающиеся от сети переменного тока
 - б) питающиеся от энергии аккумуляторных батарей
 - в) питающиеся от энергии светодиодов
 - г) питающиеся от энергии лазерного излучения
- 10) Селективный светофильтр предназначен для:
 - а) защиты глаз врача от интенсивного светового потока
 - б) выделения части светового потока с длиной волны 400-500 нм
 - в) выделения части светового потока с длиной волны 500-600 нм
 - г) выделения части светового потока с длиной волны 300-400 нм
- 11) Может ли радиометр являться частью конструкции СФУ?
 - а) да
 - б) нет
- 12) Для повышения срока службы батарей СФУ аккумуляторного типа требуется:
- а) максимально сокращать время разовой полимеризации материалов
 - б) соблюдение режима «зарядки-разрядки» аккумуляторов
 - в) особо тщательный уход за состоянием световода
- 13) Использование галогеновых ламп высокой мощности в СФУ, имеющих в своей конструкции гибкий световод, обусловлено:
- а) потерями интенсивности светового потока на пути от источника до полимеризуемого материала
- б) расположением селективного светофильтра в концевой части конструкции световода
- в) возможностью значительной потери мощности светового потока при перегибе световода
- 14) Ухудшение состояния интерференционного светофильтра в СФУ приводит:
 - а) к уменьшению плотности мощности светового потока
 - б) к повышению удельной мощности ультрафиолетовых лучей
 - в) к повышению удельной мощности инфракрасных лучей
- 15) Какой процент ультрафиолетовых лучей пропускают латексные перчатки в растянутом состоянии?
 - a) 1%
 - б) 4%
 - в) 7%
 - r) 10%
- 16) Дуал-световоды предназначены
 - а) для полимеризации материала в небольших полостях
 - б) для полимеризации материалов в ортодонтической практике
 - в) только для диагностики кариеса
- г) для одновременного подведения светового потока к разным поверхностям зуба

Задачи для контроля усвоения темы

- 1. Какое максимальное расстояние от световода СФУ до пломбы должно быть при фотополимеризации композиционного материала?
- 2. Какими должны быть показатели плотность мощности светового потока (ПМСП) и плотность мощности теплового потока (ПМТП)?
- 3. Как часто необходимо проверять параметры СФУ (стоматологического фотополимеризационного устройства)?

Список тем по УИРС:

- 1. Особенности устройства и эксплуатации СФУ.
- 2. Техника «плавного старта» фотополимеризации.

Тема №4: *СТОМАТОЛОГИЧЕСКИЕ ИНСТРУМЕНТЫ. ПРАВИЛА АСЕПТИКИ И АНТИСЕПТИКИ В КЛИНИКЕ ТЕРАПЕВТИЧЕСКОЙ СТОМАТОЛОГИИ.*

Значение изучения темы: разнообразие стоматологического инструментария требует четкой его систематизации с целью правильного понимания показаний к его применению.

В лечебно-профилактических учреждениях стоматологического профиля значительная роль отводится организации профилактической асептики и антисептики, дезинфекции и стерилизации. Особенно актуально знание этого вопроса для врачей стоматологов, которые наиболее подвержены риску заражения.

Цели занятия: на основе знаний о существующих стоматологических инструментах, научиться проводить их систематизацию, определять положения в систематизации вновь разрабатываемых стоматологических инструментов, определять показания к их применению.

На основе знаний о средствах и методах дезинфекционностерилизационного режима в лечебно-профилактических учреждениях терапевтического профиля, научиться систематизировать этапы обработки инструментов, подлежащих стерилизации, определять показания к выбору средств и мегодов дезинфекции и стерилизации. Для этого необходимо:

- знать систематизацию и показания к применению стоматологических инструментов;
- уметь провести дезинфекцию и стерилизацию стоматологического инструментария;
 - иметь представление о новых дезинфицирующих средствах;
- иметь навыки по подбору дезинфицирующих средств в зависимости от конкретной клинико-эпидемиологическойситуации.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- оценка образцов современных дезинфицирующих средств, представленных на аннотациях различных фирм производителей,
- проведение подбора дезинфицирующих средств в зависимости от конкретной клинико-эпидемиологической ситуации и комплекта инструментов

для осмотра полости рта,

- решение ситуационных задач.
- 3. Подведение итогов:
 - тестовый контроль.

Основные понятия и положения темы:

Классификация ручных стоматологических инструментов по назначению:

- -Инструменты для осмотра полости рта.
- -Инструменты для удаления зубных отложений.
- -Инструменты для препарирования твердых тканей зубов.
- -Инструменты для пломбирования.
- -Инструменты для окончательной обработки пломб.
- -Эндодонтические инструменты.

Классификация инструментов для осмотра полости рта:

- 1. Инструменты общего назначения.
- 2. Диагностические инструменты для парадонтологии.
- 3. Специальные диагностические инструменты.

К инструментам для осмотра полости рта общего назначения относятся:

- 1. Зеркало стоматологическое:
 - с увеличивающим эффектом,
 - без эффекта увеличения.

Зеркало стоматологическое предназначено:

- для осмотра труднодоступных участков полости рта,
- для дополнительной подсветки недостаточно освещенных участков полости рта,
- для отведения и защиты тканей полости рта в момент осмотра и препарирования зубов.
- 2. Зонд стоматологический:
 - изогнутый (угловой, дугообразный, интерпроксимальный),
 - прямой

Зонд стоматологический предназначен для:

- определения состояния твердых тканей зубов (плотность, болезненность), поверхности пломб,
 - проведения перкуссии зубов,
 - вскрытия полости зуба,
 - внесения препаратов в кариозную полость и полость зуба.
- 3. Пинцет стоматологический предназначен для:
 - определения степени подвижности зубов,
 - проведения перкуссии зубов,
 - внесения препаратов в кариозную полость и полость зуба,
 - внесения в полсть рта ватных валиков и турунд,
- установки вспомогательных инструментов и устройств для пломбирования.

К диагностическим инструментам для пародонтологии относятся:

- 1. Зонд пародонтологический:
- для определения глубины зубодесневых карманов,

- для проведения фуркационной пробы.

Существует несколько типов пародонтологических зондов: пуговчатый, с насечками и зонд с цветовой шкалой. Зонды, имеющие цветовую кодировку частей наиболее удобны в работе.

2. Зонд протетический, обладает высокой диагностической чувствительностью, предназначен для исследования состояния коронок, мостов, вкладок и накладок (виниров).

Инструменты для удаления зубных отложений:

- 1. Экскаватор (удаление остатков пищи из кариозной полости, размягченного дентина, временных пломб, мягкого зубного налета, над/поддесневых зубных отложений).
- 2.Скейлер.
- 3. Кюреты (для выскабливания пораженной костной ткани, удаления грануляций из луночек удаленных зубов, пародонтальных карманов).

Ручные инструменты для препарирования твердых тканей зубов:

- 1. Триммеры:
 - для вертикального сглаживания краев полостей,
- для горизонтального сглаживания краев полостей (формирования придесневых стенок).
- 2. Эмалевые ножи:
 - для препарирования эмалевого края полостей.

Инструменты для пломбирования зубов:

- 1. Шпатель стоматологический:
 - для замешивания пломбировочных материалов и лечебных составов,
 - для внесения пломбировочных материалов в кариозную полость.
- 2. Штопфер-гладилка:
 - для внесения пломбировочных материалов в кариозную полость,
 - для конденсации пломбировочных материалов в кариозной полости,
 - для моделирования пломб.
- 3. Carrier-Condenser:
 - для внесения подкладочных материалов в кариозную полость,
- для конденсации подкладочных пломбировочных материалов в кариозной полости.
- 4. Burrisher-моделировочный инструмент.
- 5. Амальгам -Трегер (уплотнитель):
- для внесения амальгамы в сформированную полость.
- 6. Матрицедержатели для постановки и фиксации матриц при пломбировании зубов.

Дополнительные инструменты для пломбирования:

- 1. Ретракторы мягких тканей.
- 2. Коффердам (раббердам).
- 3. Клинья (деревянные и светопроводящие).

Инструменты для окончательной обработки пломб:

1. Carvers - предназначены для удаления излишков пломбировочного материала, создания анатомической формыпроверки адоптации матрицы (имеют

вид острых гладилок)

- 2. Exess Sealer для удаления излишков пломбировочных материалов.
- 3. Filling Remover для удаления временных пломб.
- 4. Финишный нож для удаления излишков пломбировочных материалов с фронтальной и жевательной групп з)бов.
- 5. Финишные штрипсы (металлические и пластиковые).

Дезинфекция и стерилизация стоматологических инструментов

Асептика - система профилактических мероприятий, направленных против возможности попадания микроорганизма в рану, ткани, органы, полости тела больного при лечебных и диагностических манипуляциях.

Антисептика - это совокупность химических, биологических, механических и физических способов снижения численности, подавления или полного уничтожения популяций облигатно и условно-патогенных микроорганизмов на здоровой коже, слизистых оболочках, в ране, патологических образованиях с целью предупреждения развития инфекционных процессов и сепсиса.

Дезинфекция - это мероприятия, направленные на уничтожение возбудителей заразных болезней (патогенных и условно-патогенных микроорганизмов) в окружающей среде, в том числе и на изделиях медицинского назначения.

Стерилизация (обеззараживания, обеспложивание) - совокупность физических и химических способов полного освобождения объектов внешней среды от микроорганизмов.

В терапевтической стоматологии стерильными должны быть все инструменты, соприкасающиеся с твердыми тканями зубов и слизистой оболочкой ротовой полости, контактирующие со слюной и кровью, а также применяемые для инъекционного введения лекарственных препаратов.

Дезинфекции подлежат все медицинские изделия после их применения. После дезинфекции изделия либо применяют по их назначению, либо, при наличии показаний, подвергают предстерилизационной очистке и стерилизации. При дезинфекции стоматологических инструментов хорошо зарекомендовали себя такие средства, как Деконекс Денталь,

Дезэффект. Дезинфекцию проводят в закрытых емкостях при полном погружении инструментов в раствор в специальном помещении, оборудованном механической вентилящей.

Режимы дезинфекции и стерилизации стоматологических инструментов

Наименование объектов	Дезинфици	Концентрация	Экспозиция (мин.)	Способ обработки
CKIUB	рующий агент	раствора	(мин.)	
Стоматологические боры, эндодонтический инструмента-	10% нашатырны 3% раствор пер в соотношени	екиси водорода	Помещение в рабочего прис	раствор во время ема
рий	Этиловый спирт	70%	30 минут	Помещение в раствор с прове-
	«Лизоформин- 3000»	0,75%	60 минут.	дением предвари- тельной очистки
	-«Сайдекс»		15 мин	от органических соединений.
	«Лизетол АФ»	Время предусмо	трено инст-	Сразу после при-

Стоматологические инструменты, многоразовые наконечники для слюноотсосов и пыле-	«Лизафин» «Деконекс 50 -ФФ» Хлорамин «Лизетол АФ»	рукцией (в среднем 30 3% раствор 4% раствор	мин.) 60 минут 30 минут	менения, не допуская подсушивания, помещают в одно из указанных средств После применения погружение в раствор
сосов. Стоматологические зеркала.	Перекись водорода	6% раствор	60 минут	Перед помещением в раствор перекиси водорода, промывают проточной водой, замачивают на 15 минут в моющем растворе и вновы промывают проточной водой.
Стоматологические наконечники	Хлорамин Б	1% раствор	30 минут	Двукратное протирание наружных поверхностей и канала для бора стерильным марлевым тампоном, смоченным дезинфицирующим раствором.
Лампы для фотопо- лимеризации: А) внешние детали	Этиловый спирт	70%	15 минут	риствором.
Б) световод	«Сайдекс» «Глутарал» Этиловый спирт	70%	15 минут 15 минут 30 минут	Протирание марлевой салфеткой Обработка методом холодной стерилизации, с последующим промыванием стерильной водой и просушиванием.

После дезинфеции стоматологические инструменты многократного применения, за исключением зеркал, подвергают предстерилизационной очистке и стерилизации.

Цель предстерилизационной очистки - удаление с инструментов белковых, жировых, механических загрязнений, а также остатков лекарственных препаратов.

Предстерилизационную обработку ручным способом проводят в следующей последовательности:

- каждый инструмент ополаскивается в проточной воде,
- инструменты погружают на 15 минут в бачок с теплым(50°С) моющим раствором (перекись водорода, моющие средства типа «Лотос», вода),
- моются в этом растворе ершами или тампонами,
 - ополаскиваются в проточной воде, затем в дистиллированной воде,

сушатся в сухожаровом шкафу.

Стерилизацию инструментов проводят паровым, воздушным или химическим методами. При этом строго должны соблюдаться режимы стерилизации.

Режимы стерилизации паровым методом (автоклавирование)

Условия проведения стерили зации	Режимы стерилизации		Наименование объектов
	Давление пара, кгс/см ²	Время выдерж- ки, мин	
В стерилизационных короб- ках или в двух- слойной мяг- кой упаковке из бязи или пергаментной бумаге.	2,0 (132-C) 1,1 (120°C)	20 45	Перевязочные материалы, инструменты, детали приборов и аппаратов, соприкасающиеся с раневой поверхностью, изготовленные из коррозионностойких металлов и сплавов, шприцы с надписью 200°C, стеклянная посуда.
	только 1,1 (120°C)	45	Изделия из резины.

Режимы стерилизации воздушным (сухожаровым) методом

Условия проведения стерили зации	Режимы стерилизации		Наименование объектов
	Темпера тура, °С	Время вы- держки, мин.	
Сухие изделия в упаковке или без упаковки в от-крытых емкостях.	180	60	Инструменты стоматологические, детали и узлы приборов и аппаратов, соприкасающиеся с раневой поверхностью, в том числе изготовленные из коррозионно-нестойких материалов и сплавов.
	180	60	Шприцы с надписью 200°C, стеклянная посуда.

Режимы стерилизации химическим методом

Условия проведения стерили	Режимы стерилизации		Наименование объектов
зации	Темпера тура, °С	Время вы- держки, мин.	
6% раствор перекиси водорода, годный в закрытой емкости 7 суток.	Не менее 18	360	Инструменты из коррозионно-стойких металлов и сплавов.
Дезоксон-11% раствор, год- ный в течение суток.	Не менее 18	45	Изделия из резины, пластмасс, в том числе с металлическими частями из коррозионно-стойких металлов и сплавов.

Для стерилизации химическим методом могут использоваться и другие средства, разрешенные к применению в лечебных учреждениях Российской Федерации. При этом стерилизация проводится в соответствии с режимом,

рекомендованным фирмой-изготовителем.

Контроль качества предстерилизационной обработки проводят путем постановки амидопириновой, азопирамовой и фенолфталеиновой проб. Контролю подлежит 1% каждого вида изделий, обработанных за сутки, но не менее 3-5 единиц.

Методика постановки проб:

Контролируемое изделие протирают марлевой салфеткой, смоченной реактивом, или 2-3 капли реактива с помощью пипетки наносят на изделие. Для контроля труднодоступных мест применяют ватные турунды, смоченные в реактиве.

Азопирамовая проба:

Рабочий раствор - азопирам и 3% раствор перекиси водорода в соотношении 1:1.

При постановке азопирамовой пробы в присутствии следов крови немедленно или не позднее, чем через 1 минуту, появляется фиолетовое окрашивание реактива в течение нескольких секунд, переходящее в розово-сиреневое или буроватое. Азопирам, кроме следов крови, выявляет наличие на изделиях остаточных количеств пероксидаз растительного происхождения, окислителей, а также ржавчины.

Амидопириновая проба:

Рабочий раствор - 5% спиртовой раствор амидопирина, 30% раствор уксусной кислоты, 3% раствор перекиси водорода.

При постановке амидопириновой пробы о наличии на изделиях остаточных количеств крови свидетельствует немедленное или не позже, чем через одну минуту, появление сине-зеленого окрашивания реактива. Окрашивание, наступившее позже, чем через одну минуту, не учитывается.

Фенолфталеиновая проба:

Рабочий раствор - 1% спиртовой раствор фенолфталеина.

Появление при постановке пробы розового окрашивания реактива свидетельствует о наличии на изделии остаточных количеств щелочных компонентов моющего средства.

При положительной на кровь или моющее средство всю партию контролируемых изделий, из которой проводилась выборка для контроля, подвергают повторной обработке до получения отрицательных результатов.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) К инструментам для осмотра полости рта относятся:
 - а) стоматологическое зеркало
 - б) шпатель стоматологический
 - в) зонд стоматологический
 - г) экскаватор
 - д) пинцет стоматологический
- 2) Экскаватор инструмент, применяемый для:
 - а) удаления остатков пищи из кариозной полости, мягкого зубного налета
 - б) удаления размягченного дентина
 - в) удаления временных пломб

- г) конденсирования пломбировочного материала
- д) исследования кариозных полостей
- 3) К инструментам для пломбирования кариозных полостей относятся:
 - а) гладилка
 - б) экскаватор
 - в) штопфер-гладилка
 - г) шпатель стоматологический
- 4) Стоматологические наконечники дезинфицируют путем:
- а) двукратного протирания наружных поверхностей и канала для бора марлевым тампоном, смоченным в 70 % этиловом спирте с интервалом в 15 минут
- б) дезинфекция наконечников осуществляется только аппаратным способом
- в) двукратного протирания 3% раствором перекиси водорода с интервалом в 10 минут
- 5) Подлежат ли дезинфекции инструменты одноразового применения после использования?
 - а) подлежат
 - б) не подлежат
- в) подлежат лишь в том случае, если они контактировали с пациентами, в анамнезе которых перенесенный гепатит B, C либо носительство HBS антигена
- 6) К дополнительным инструментам для пломбирования относятся:
 - а) клинья
 - б) скейлер
 - в) финишный нож
- 7) Карбидные боры иначе называются:
 - а) стальными
 - б) алмазными
 - в) твердосплавными
- 8) Зонд стоматологический предназначен для:
 - а) определения состояния твердых тканей зубов
 - б) внесения в полость рта ватных валиков
- в) для отведения и защиты тканей полости рта в момент осмотра и препарирования зубов
- 9) Указать правильную последовательность этапов обработки инструментов:
 - а) стерилизация
 - б) предварительная очистка
 - в) предстерилизационная очистка
 - г) дезинфекция
- 10) Пластмассовый шпатель применяют
 - а) при отсутствии металлического шпателя
- б) для приготовления лекарственных веществ и пломбировочного материала, инактивирующихся от металла

- 11) Контроль качества предстерилизационной очистки изделий медицинского назначения на наличие скрытой крови, окислителей и ржавчины, проводят путем постановки:
 - а) азопирамовой пробы
 - б) фенолфталеиновой пробы
 - в) бензидиновой пробы
- 12) С пособ стерилизации резиновых перчаток:
 - а) воздушный
 - б) паровой
 - в) метод холодной стерилизации
- 13) Предварительная очистка эндодонтического инструментария (многоразового использования) и боров заключается в их погружении в раствор перекиси водорода и нашатырного спирта в концентрации и соотношении:
 - а) 3% раствор перекиси водорода, 10% нашатырный спирт (1:1)
 - б) 6% раствор перекиси водорода, 10% нашатырный спирт (2:1)
 - в) все неверно
- 14) Время выдержки терапевтического набора инструментов в 6% растворе перекиси водорода при проведении его дезинфекции составляет:
 - а) 60 минут
 - б) 90 минут
 - в) 10 минут
 - г) 40 минут
 - д) 120 минут
- 15) Бактерицидные ультрафиолетовые облучатели открытого типа предназначены для обеззараживания воздуха в помещении:
 - а) во время нахождения там людей
 - б) только при отсутствии людей в помещении
- 16) Стерилизующим средством при паровом методе стерилизации является:
- а) водяной насыщенный пар под избыточным давлением 0,05 0,21 МПа температурой 110° 133°
 - б) сухой горячий воздух температурой 180°
- в) раствор какого-либо химического средства, обладающего сильным дезинфицирующим действием
- 17) Штопфер имеет рабочую часть в виде головки, имеющей форму:
 - а) круглую
 - б) S-образную
 - в) грушевидную
- 18) Гладилка стоматологический инструмент, предназначенный:
 - а) для уплотнения пломбировочного материала в полости
 - б) для удаления зубных отложений
- в) для внесения пастообразных лекарственных прокладок, пломбировочных материалов для временных и постоянных пломб
- 19) Пакеты для сбора отходов класса б имеют:
 - а) желтую маркировку

- б) белую маркировку
- в) красную маркировку
- г) не имеют маркировки
- 20) Эндодонтический инструментарий может храниться в чашках петри при их открытии:
 - а) до 4-х часов
 - б) до 24-х часов
 - в) до 6 часов
 - г) до 12 часов
 - д) время хранения неограниченно

Задачи для контроля усвоения темы

- 1. При препарировании и формировании кариозной полости по поводу «глубокого кариеса» был использован турбинный наконечник. Правильно ли это?
- 2. После дезинфекции стоматологические инструменты многократного применения (шпатели, пинцеты, зонды, штопфер-гладилки, экскаваторы) были помещены для стерилизации в сухожаровой шкаф. Все сделано соответственно требованиям?
- 3.После дезинфекции и предстерилизационной подготовки в сусожаровой шкаф были заложены: металлические шпатели, пинцеты, зонды, зеркала, штопфер-гладилки, экскаваторы. Вы согласны?

Список тем по УИРС:

- 1. Дезинфекция и стерилизация стоматологических инструментов. Принципы соблюдения правил асептики и антисептики в клинике терапевтической стоматологии.
- 2. Стоматологические инструменты для клиники терапевтической стоматологии. Классификация инструментов по назначению и принципу их использования.

Тема №5: КЛИНИЧЕСКАЯ АНАТОМИЯ РАЗЛИЧНЫХ ГРУПП ЗУБОВ. ЗУБНАЯ ФОРМУЛА, ЕЕ ОБОЗНАЧЕНИЕ.

Значение изучения темы: знание анатомии зубов, топографии полости зуба и количества корневых каналов, позволит повысить эффективность препарирования зубов, инструментальной обработки системы корневых каналов с последующим их пломбированием. Знание анатомотопографических особенностей зубов позволит предупредить ошибки и осложнения, которые могут возникнуть в процессе диагностики и лечения зубов.

Цели занятия: научиться использовать знания о морфофункдиональных особенностях строения зубов в диагностике и лечению заболевания твердых тканей зубов.

Для этого необходимо:

- знать анатомо-физиологические особенности различных групп зубов;
- знать признаки, определяющие положение зуба в зубном ряду;
- уметь записывать анатомические и клинические зубные формулы;
- иметь навыки по проведению профилактических осмотров и оценке
 36

состояния органов и тканей полости рта.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- -определение зубов разной групповой принадлежности;
- -решение ситуационных задач.
- 3. Подведение итогов:
- -тестовый контроль.

Основные понятия и положения темы:

Признаки, определяющие положение зуба в зубном ряду.

Признак угла коронки - угол, образованный медиальной поверхностью коронки и режущим краем (жевательной поверхностью) значительно острее, чем угол, образованный дистальной поверхностью и режущим краем.

Признак кривизны коронки - на вестибулярной поверхности коронки зуба большая выпуклость располагается вблизи медиального края, а пологий скат - вблизи дистального края.

Признак отклонения корня - корень зуба или его верхушка отклоняется в дистальном направлении по отношению к продольной оси зуба.

На коронке зуба различают следующие поверхности:

- вестибулярная обращена в преддверие полости рта (у передних зубов ее называют также губной, а у задних щечной),
- язычная (у зубов нижней челюсти) или небная (у зубов верхней челюсти) обращена в полость рта,
- контактные или проксимальные поверхности, обращены к соседним зубам своего ряда (поверхность, направленная к центру зубного ряда называется медиальной (мезиальной), а противоположная поверхность дистальной),
- жевательная поверхность или режущий край обращена к зубам противоположного зубного ряда

- Основные характеристики постоянных зубов

- Основные хириктеристики постоянных зубов					
Название Зу-ба	Общая длина	Длина Ко- ронки	Длина корня	Количество корней	Количество каналов
Верхний цен- тральный ре- зец	Средняя-23 Макс-28 Мин18	Средняя- 10,5 Макс- 12 Мин8	Средняя- 12,5 Макс- 16 Мин10	1 (100%)	1 (100%)
Верхний бо- ковой резец	Средняя- 22,5 Макс 27 Мин17	Средняя-9 Макс10,5 Мин8	Средняя-13,5 Макс-16,5 Мин9	1 (99,9%)	1 (99,9%)
Верхний клык	Средняя-26 Макс32 Мин20	Средняя- 9,5 Макс- 12 Мин8	Средняя-16,5 Макс-20,5 Мин11	1 (99,9%)	1 (99,9%)
Верхний первый пре- моляр	Средняя- 21,8 Макс-25 Мин17,8	Средняя-8,5 Макс-10,5 Мин7	Средняя-12,5 Макс-14,5 Мин10	1 (19%) 2 (80%) 3 (1%)	1 (4%) 2 (95%) 3 (1%)

Название Зу- ба	Общая длина	Длина Ко- ронки	Длина корня	Количество корней	Количество каналов
Верхний второй пре- моляр	Средняя-21 Макс-25 Мин17	Средняя-8,5 Макс-10,5 Мин7	Средняя- 12,5 Макс- 15 Мин9,5	1 (85%) 2 (14%) 3 (1%)	1 (75%) 2 (24%) 3 (1%)
Верхний первый мо- ляр	Средняя- 20,5 Макс 24,5 Мин17	Средняя-8 Макс9 Мин7	Средняя-13 Макс-16 Мин10	2 (15%) 3 (85%)	3 (60%) 4 (40%)
Верхний второй мо- ляр	Средняя-20 Макс24 Мин17	Сред-няя-7 Макс8,5 Мин7	Средняя-13 Макс15,5 Мин10	1 (1%) 2 (19%) 3 (80%)	1 (1%) 2 (2%) 3 (57%) 4 (40%)
Первый нижний ре- зец	Средняя-21 Макс-25 Мин16	Средняя-9 Макс-10,5 Мин7	Средняя-12 Макс-14,5 Мин9	1 (100%)	1 (60%) 2 (40%)
Второй нижний ре- зец	Средняя-21 Макс-25 Мин16	Средняя-9 Макс-10,5 Мин7	Средняя-12 Макс-14,5 Мин9	1 (100%)	1 (60%) 2 (40%)
Нижний клык	Средняя-25 Макс30,5 Мин20	Средняя-10 Макс-12 Мин8,5	Средняя-15 Макс-20,5 Мин11,5	1 (98%) 2 (2%)	1 (94%) 2 (6%)
Нижний первый пре- моляр	Средняя-22 Макс-25 Мин17	Средняя-8 Макс10 Мин6	Средняя-14 Макс-17 Мин11,5	1 (100%)	1 (75%) 2 (20%) 3 (5%)
Нижний второй пре- моляр	Средняя-22 Макс-25 Мин17	Средняя-8 Макс10 Мин6	Средняя-14 Макс-17 Мин11,5	1 (100%)	1 (75%) 2 (20%) 3 (5%)
Нижний первый мо- ляр	Средняя-21 Макс-24,5 Мин18	Средняя- 7,5 Макс- 10 Мин6	Средняя-13,5 Макс-15 Мин11,5	2 (98%) 3 (2%)	2 (13%) 3 (80%) 4(7%)
Нижний второй мо- ляр	Средняя-20 Макс24 Мин17	Средняя-7 Макс-8,5 Мин6	Средняя-13 Макс-15,5 Мин12	1 (15%) 2 (84%) 3 (1%)	1 (3%) 2 (13%) 3 (77%) 4(7%)

Для обозначения зубов в зубной дуге предложено не менее 20 систем (формул). У нас используется система Зигмонди, разработанная ещё в 1876 г:

В настоящее время возникает необходимость в переходе на цифровые системы. Их достоинством является возможность передавать данные по телефону, телеграфу, обрабатывать с помощью компьютера, печатать на пишущей машинке или принтере. Наиболее важна из них международная двух цифровая система по Виолу, предложенная для использования Всемирной Организацией Здравоохранения (ВОЗ):

<u>18 17 16 15 14 13 12 11</u>| <u>21 22 23 24 25 26 27 28</u> 48 47 46 45 44 43 42 41 | 31 32 33 34 35 36 37 38

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Какое количество зубов в постоянном прикусе?
 - a) 28-32
 - 6) 20
 - B) 40
 - r) 26
 - д) 24
- 2) Укажите форму коронки и количество бугров у первого моляра верхней челюсти
 - а) коническая с одним бугром
 - б) прямоугольная с двумя буграми
 - в) ромбовидная с двумя вестибулярными и двумя оральными буграми
- г) прямоугольная с тремя вестибулярными и двумя оральными буграми
- 3) Какую форму имеет полость резца нижней челюсти?
 - а) каплевидную
 - б) грушевидную
 - в) щелевидную
- 4) Какую форму имеет полость моляров верхней челюсти?
 - а) кубовидная с тремя устьями (2 медиальных, 1 дистальное)
 - б) ромбовидное с тремя устьями (2 щечных, 1 небное)
 - в) щелевидное с двумя устьями (щечное и небное)
- 5) Назовите возрастные изменения топографии корневых каналов:
- а) отложения предентина преимущественно по малой кривизне, облитерация
 - 6) закрытие боковых и дельтовидных ответвлений
 - в) увеличение слоя дентина
 - г) утолщение слоя цемента в околоверхушечной области
 - д) все верно
- 6) Дентин, лишенный правильного строения, называется:
 - а) первичный
 - 6) вторичный
 - в) третичный (иррегулярный)
 - г) интерглобулярный
- 7) В течение жизни ширина дентинных канальцев зуба
 - а) сужается
 - б) расширяется
- 8) Проницаемость эмали с возрастом
 - а) понижается
 - б) не меняется
 - в) возрастает
- 9) Какую геометрическую фигуру напоминают соустья нижнего первого моляра?
 - а) треугольник
 - б) трапецию

- в) прямоугольник
- 10) Что такое кутикула:
 - а) производное гликопротеинов слюны
 - б) редуцированный эпителий эмали
 - в) комплекс микроорганизмов на органическом основании
- 11) Перечислите зубы характерные для временного прикуса:
 - а) резцы
 - б) клыки
 - в) премоляры
 - г) моляры
- 12) Укажите форму коронки и количество бугров у первого моляра нижней челюсти:
 - а) коническая с одним бугром
 - б) прямоугольная с двумя буграми (вестибулярный и оральный)
 - в) ромбовидная с двумя вестибулярными и тремя оральными буграми
- г) прямоугольная с тремя вестибулярными и двумя оральными буграми
- 13) Многоугольник с устьями каналов в вершинах в молярах нижней челюсти напоминает:
 - а) квадрат
 - 6) треугольник
 - в) ромб
- 14) Назовите корневые каналы первого премоляра верхней челюсти:
 - а) медиальный и дистальный
 - 6) небный и щечный
- 15) Какую форму имеет полость центрального резца верхней челюсти:
 - а) каплевидная
 - б) грушевидная
 - в) сферическую
 - г) щелевидную
- 16) Назовите двукорневые зубы:
 - а) первый премоляр верхней челюсти
 - б) премоляр нижней челюсти
 - в) моляры нижней челюсти
 - г) моляры верхней челюсти

Задачи.

- 1. На вестибулярной поверхности коронки зуба большая выпуклость распологается вблизи медиального края, 3 корня, 3 канала, корни отклоненены дистально. Наиболее вероятная группа зубов?
- 2. На вестибулярной поверхности коронки зуба большая выпуклость распологается вблизи медиального края, 2 корня, 3 канала, корни отклоненены дистально. Наиболее вероятная группа зубов?
- 3. На вестибулярной поверхности коронки зуба большая выпуклость распологается вблизи медиального края, 2 корня, 2 канала, корни отклоненены дистально. Наиболее вероятная группа зубов?

Список тем по УИРС:

- 1. Особенности анатомии зубов различной групповой принадлежности (альбомы, лепка).
- 2. Длина зубов и корней в зависимости от их групповой принадлежности (рабочие тетради, фотоальбомы).

Тема № 6: ГИСТОЛОГИЧЕСКОЕ СТРОЕНИЕ И ФИЗИОЛОГИЯ ТВЕРДЫХ ТКАНЕЙ ЗУБОВ.

Значение изучения темы: максимально полное знание гистологического строения и физиологии тканей зуба помогает понять механизмы патологических процессов протекающих в тканях зуба и обосновать методы их лечения. Цели занятия: научиться использовать знания по гистологии и физиологии зубов в диагностике и профилактике заболеваний твердых тканей зубов. Для этого необходимо:

- знать анатомо-физиологические особенности строения зубов в различные возрастные периоды;
- знать гистологическое строение тканей зуба;
- знать физиологию тканей зуба;
- уметь применять знания гистологии и физиологии зубов для объяснения механизмов патологических процессов;
- иметь навыки по проведению профилактических осмотров и оценке состояния органов и тканей полости рта.

План изучения темы:

- 1) Контроль исходных знаний:
- 2) Самостоятельная работа:
- -определение зубов разной групповой принадлежности
- -решение ситуационных задач.-
- 3) Подведение итогов:
- -тестовый контроль, контрольные вопросы.

Основные понятия и положения темы:

Развитие зубов

Зубы являются производными слизистой оболочки полости рта эмбриона. Из эпителия слизистой оболочки развиваются эмалевые органы, а из находящейся под эпителием мезенхимы - дентин, пульпа, цемент, окружающие зуб твердые и мягкие ткани (пародонт). В развитии зубов выделяют три стадии:

- 1. стадия закладка зубов и их зачатков;
- 2. стадия дифференцировка зубных зачатков
- 3. стадия образования зубов.

Стадия 1: на 6 - 7 неделе эмбрионального развития на верхней и нижней поверхностях ротовой полости возникает утолщение эпителия - зубная пластинка (lamina enamelare), врастающая в подлежащую мезенхиму. На обращенной к губе или щеке поверхности зубной пластинки формируются за счет дальнейшего развития эпителия колбовидные выпячивания, превращающиеся затем в эмалевые органы молочных зубов. В каждой зубной пластинке образуется по 10 выпячиваний соответственно количеству молочных зубов. На 10 неделе эмбрионального развития в эмалевые органы, выпячиваясь внутрь их стенки, врастает ме-

зенхима, которая является зачатком *зубных сосочков*, papillae dentales. К концу 3 месяца развития эмалевые органы частично обособляются от зубной пластинки, находясь в соединении с ней посредством эпителиальных тяжей - *шейки* эмалевого органа. В окружности эмалевого органа за счет уплотнения окружающей его мезенхимы формируется *зубной мешочек*, sacculus dentalis, который у основания зубного зачатка сливается с зубным сосочком.

Стадия 2: Происходит разделение однородных клеток эмалевого органа на отдельные слои. В центре эмалевого органа образуется пульпа, а по периферии - слой наружных эмалевых клеток и слой внутренних эмалевых клеток, дающих начало клеткам амелобластам, участвующим в образовании эмали.

Одновременно с преобразованием эмалевого органа происходит процесс дифференцировки зубного сосочка. На поверхности сосочка из клеток мезенхимы формируется несколько рядов *одонтобластов* - дентообразующих клеток.

Стадия 3: В конце 4 месяца эмбрионального периода возникают зубные ткани: дентин, эмаль и пульпа зуба. Образование дентина происходит за счет одонтобластов, от которых идут в радиальном направлении к внутренним эмалевым клеткам тонкие преколлагеновые волокна. В дальнейшем они превращаются в наружный слой предентина - необызвествленный плащевый дентин. Внутренние слои предентина - это тангенциальные волокна одонтобластов, из которых после обызвествления развивается околопульпарный дентин. В конце 5 месяца эмбрионального развития начинается обызвествление дентина.

В начале 5 месяца амелобласты на вершине зубного сосочка образуют эмаль. Этот процесс начинается в области жевательных бугорков. В дальнейшем про-исходит обызвествление эмали, которое заканчивается после прорезывания зубов.

Развитие корня зуба происходит в постэмбриональном периоде.

Постоянные зубы возникают также из зубных пластинок. На 5 месяце развития позади зачатков молочных зубов образуются эмалевые органы резцов, клыков и малых корневых зубов. Одновременно зубные пластинки растут кзади, где по их краям закладываются эмалевые органы больших коренных зубов. Этапы формирования постоянных зубов сходны с таковыми молочных зубов, причем зачатки постоянных зубов лежат вместе с молочными зубами в одних зубных альвеолах.

Нарушение процесса развития зубов может привести к неправильному отложению твердых веществ (гипоплазия, гиперплазия эмали, зубы Турнера, эрозия, дефекты обызвествления дентина), отклонениям в количестве зубов (адентия, сверхкомплектные зубы), неправильной форме отдельных зубов (зубы Гетчинсона), неправильному расположению зубов в челюсти (дистопия).

Эмаль

Эмаль покрывает коронку зуба. Толщина слоя эмали в различных отделах коронки колеблется от 1,62 - 1,7 мм на уровне жевательных бугорков моляров до 0,01 мм в области шейки зуба.

Химический состав:

Гидроксиапатит - 75.04% - 12,06% Карбонапатит -4,39% Хлорапатит Фторапатит - 0,66% Карбонат кальция - 1,33% - 1,62% Карбонат магния -,2% Органические вещества Вода - 3.8%

В эмали зуба содержится 96,5% минеральных солей, из которых: примерно 54% - фосфор, 17% - магний и 37% -кальций, представленные гидроксиапатитами. Неорганическое вещество, откладываясь вокруг ультратонких фибрилл формирует эмалевые призмы толщиной 3-6 мкм, имеющие на поперечном разрезу гексогональную, овальную или чаще аркадообразную форму.

Основным структурным образованием эмали является эмалевая призма. Толщина призм неодинакова, в среднем от 3 до 6 мкм. Эмалевые призмы соединены в пучки (по 10 - 20), которые направлены радиально от дентино-эмалевого соединения к наружной поверхности. В толще каждой эмалевой призмы проходят тонкие цитоплазматические волокна образующие тонкую органическую сеточку, в петлях которой располагаются кристаллы минеральных солей. Благодаря тому, что эмалевые призмы имеют S-образную изогнутость по своему ходу, на продольном шлифе зуба не удаётся разрезать каждую эмалевую призму строго продольно на всём протяжении.

Правильное чередование поперечных (диазоны) и продольных (паразоны) шлифов пучков эмалевых призм объясняет возникновение тёмных и светлых полос, которые пересекают в радиальном направлении толщу эмали. Это, так называемые, полосы Гунтера-Шрегера. Начинаясь у дентино-эмалевой границы, эти полосы в виде тёмных и светлых дуг идут снаружи, заканчиваясь на некотором расстоянии от наружной поверхности эмали.

Основной структурной единицей призмы считаются кристаллы апатитоподобного происхождения, которые плотно прилежат друг к другу, но располагаются под углом. Считают, что размер кристаллов с возрастом изменяется, они становятся больше.

Структурами органической природы в эмали являются ламеллы, пучки и веретёна. Ламеллы (пластинки) проникают в эмаль на значительную глубину, эмалевые пучки - на меньшую глубину. Эмалевые веретена - отростки одонтобластов, проникающие в эмаль через дентино-эмалевое соединение.

Дентин

Дентин (dentinum) по своему строению напоминает грубо-волокнистую ткань, состоящую из основного вещества, пронизанного большим количеством (15 000 - 75 000 на 1м2) дентинных трубочек (канальцев) 1 - 5 мкм диаметром. В дентине содержится 70 - 72% неорганических и 28 - 30% органических веществ и воды. Основу неорганического вещества составляет фосфат кальция (гидроксиапатит), карбонат кальция, и в небольшом количестве фторид кальция, магния, натрия. Органическую основу дентина образует коллаген, а также

небольшое количество мукополисахаридов и жира. Дентин-ные канальцы имеют вид тонких трубочек, идущих в радиальном направлении от пульпы зуба к эмали и цементу. Они шире во внутренних отделах дентина и постоянно сужаются кнаружи. При нормальных условиях просвет дентинного канальца целиком заполнен волокном Томса (отростком одон-тобласта). В дентинных трубочках циркулирует дентинная жидкость, которая доставляет органические и неорганические вещества, участвующие в обновлении дентина.

Клиническим подтверждением наличия обменных процессов является изменение структуры и состава дентина при воздействии факторов на твёрдые ткани: химических, возрастных изменений, хронической или механической травмы.

Гистологическим исследованием установлено, что внутренние отделы околопульпарного дентина (предентина) коронки зуба имеют нервные окончания, которые являются чувствительными, а возможно и афферентными. Различают:

- первичный дентин образуется в период формирования твёрдых тканей зуба;
- вторичный дентин (заместительный) образуется в процессе жизнедеятельности зуба;
- третичный дентин (иррегулярный) образуется при патологических изменениях;
- предентин наименее обызветвлённая часть дентина, прилегающая к пульпе;
- склерозированный дентин прозрачный дентин, характеризуется отложением солей кальция в дентинных канальцах;
- дентикли;

Цемент

Цемент покрывает корень зуба на всём протяжении и по своему строению напоминает грубоволокнистую кость. Он состоит из обызвествлённого основного вещества, в котором заложены коллагеновые волокна. Часть этих волокон продолжается в коллагеновые волокна периодонта и прободающие (шарпеевые) волокна костной ткани, таким образом, происходит укрепление зуба в альвеоле. Различают цемент безкле-точный (первичный) и клеточный (вторичный). В норме цемент не рассасывается, а происходит медленное отложение новых слоев в течение всей жизни, на что указывает слоистость цемента. Первичный цемент прилежит непосредственно к дентину, покрывая боковые поверхности корня. Вторичный цемент (клеточный), содержащий цементоциты, локализуется лишь в области верхушки корня и на межкорневых поверхностях премоляров и моляров. Он покрывает слой первичного цемента. В основном веществе цемента также обнаруживаются коллагеновые волокна, идущие в различных направлениях. Большая часть из них идёт в радиальном направлении, причём с одной стороны соединяется с радиальными волокнами дентина, а с другой - вплетаются в волокна периодонта. Они получили название прободающих волокон цемента. При некоторых патологических состояниях отмечается гиперцементоз в результате неравномерного избыточного отложения цемента на поверхности корня.

Физиология твёрдых тканей зуба

Явление проницаемости зуба осуществляется благодаря омыванию зуба. В настоящее время проницаемость эмали изучена довольно подробно, что позволило пересмотреть ряд ранее существующих представлений. Если ранее считалось, что вещества в эмаль поступают по пути *пульпа - дентин -эмаль*, то в настоящее время не только установлена возможность поступления вещества в эмаль из слюны, но и доказано, что этот путь является основным. Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. Установлено, что уровень проницаемости может изменяться под воздействием ряда факторов. В значительной степени проницаемость зависит от проникающего агента. Одновалентные ионы более проницаемы, чем двухвалентные. Важное значение имеет заряд иона, рН среды, активность ферментов и другое. Наряду с этим уровень проницаемости зависит от структуры эмали. Так, проницаемость эмали постоянных зубов человека понижается с возрастом.

Особого внимания заслуживает изучение распространения ионов фтора в эмали. При аппликации раствора фторида натрия ионы фтора быстро проникают на небольшую глубину (несколько десятков мкм) и, как считают некоторые авторы, включаются в кристаллическую решётку эмали. Следует отметить, что после обработки поверхности эмали раствором фторида натрия проницаемость эмали резко снижается. Этот фактор имеет важное значение для клиники, так как определяет последовательность обработки зубов в процессе реминерализирующей терапии.

Большинство исследователей читают, что основным условием проникновения в эмаль различных ионов и анионов является разность осмотических давлений межклеточной жидкости пульпы и ротовой жидкости на поверхности зуба. Так как слюна значительно богаче фосфатами, ионами кальция и другими ионами, чем интерстициальные жидкости (эмалевая жидкость), ионы передвигаются от слюны в эмаль зуба. Установлено, что органические вещества проникают с поверхности в глубинные слои по образованиям, содержащим большое количество органического вещества (ламеллы, веретёна и др.). При рассмотрении процесса проникновения неорганических и органических веществ в эмаль зуба неизбежно затрагивается слюна - среда, в которой постоянно находится зуб. Обусловлено это тем, что проницаемость возможна при наличии жидкой среды, при условии растворения веществ. Смачивание поверхности зуба слюной обуславливает физиологическое состояние твёрдых тканей зуба, при котором поддерживается постоянство этой ткани, осуществляется выполнение её основной функции - защиты подлежащей ткани от внешних раздражителей.

Механизм передачи болевого импульса

Большинство авторов считают, что нервные волокна в обызвествлённый дентин не проникают, а для объяснения клинического факта - чувствительности дентина (передача боли при воздействии химических и температурных раздражителей и препарировании) существуют две теории:

1. В 1959 г. Over и Repp установили, что дентинные отростки одонтобластов

содержат большое количество ацетилхолинестеразы, которая играет важную роль в передаче нервного импульса, таким образом отростки одонтобластов наделяются свойством, присущим нервным волокнам.

2. В 1966 г. Branstom выдвинул теорию гидродинамического механизма передачи болевого импульса. Так как многочисленные дентинные трубочки заполнены дентинной жидкостью, любое воздействие на дентин вызывает перемещение этой жидкости в системе дентинных канальцев, и тем самым оказывает влияние на рецепторный аппарат пульпы зуба.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1. Дентин, лишенный правильного строения, называется:
- а) первичный
- 6) вторичный
- в) третичный (иррегулярный)
- г) интерглобулярный
- 2. Появление зубной пластинки относят к:
- а) 6-7 недели развития эмбриона
- б) 8-9 недели развития эмбриона
- в) после рождения ребенка
- г) на первом году жизни ребенка
- 3. Проницаемость эмали с возрастом:
- а) понижается
- б) не меняется
- в) возрастает
- 4. Полосами Гунтера Шрегера называют:
- а) линии минерализации эмали
- б) различное расположение эмалевых призм на шлифе
- в) межпризменное пространство
- 5. Дентинный каналец заполнен:
- а) отростком одонтобласта
- б) дентинным ликвором
- в) все верно
- 6. Процентное соотношение неорганических и органических веществ в эмали:
- а) 95-неорганических, 1-2 органических, 3-5 воды
- б) 50-неорганических, 5-6 органических, 4-8 воды
- в) 70-неорганических, 8-9 органических, 10 воды
- 7. Линиями Рециуса называют:
- а) различное расположение эмалевых призм на шлифе
- б) линии минерализации эмали
- в) валикообразные образования шейки зуба
- 8. Болевые ощущения, которые возникают во время препарирования твердых тканей зуба, вызваны:
- а) повреждением дентинных отростков, которые возбуждают одонтобласты, возбуждение передается периферическому нервному сплетению пульпы
- б) препарированием дентина, приводящем к раздражению нервных рецепто-

ров в дентинных канальцах,

- в) нагреванием твердых тканей зуба и раздражением нервных рецепторов пульпы
- г) всё перечисленное верно.

Задачи

- 1. Ткань зуба содержит примерно 94% неорганических веществ и около 6% органических веществ и воды. Расскажите о ее строении.
- 2. Ткань зуба содержит примерно 70-72% неорганических веществ и около 28-30% органических веществ и воды. Расскажите о ее строении.
- 3. На основании чего Over и Repp наделяют отростки одонтобластов свойствами, присущими нервным волокнам?

Список тем по УИРС:

- 1. Особенности топографии полости зубов различной групповой принадлежности.
- 2. Гистологическое строение твердых тканей зубов (фотоальбомы, рефераты).
- 3. Физиология твердых тканей зубов.

Тема №7: ПЛОМБИРОВОЧНЫЕ МАТЕРИАЛЫ. СИСТЕМАТИЗАЦИЯ ПЛОМБИРОВОЧНЫХ МАТЕРИАЛОВ. ПЛОМБИРОВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ВРЕМЕННЫХ ПЛОМБ.

Значение изучения темы: существование обширного рынка современных пломбировочных материалов, постоянное появление новых образцов и групп, а также совершенствование представлений о материалах, используемых в клинической практике, приводит к необходимости постоянного обновления информации **и** оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе временных пломбировочных : материалов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых временных пломбировочных материалов и проводить назначение различных видов в зависимости от цели и задач лечебных мероприятий в конкретной клинической ситуации.

Для этого необходимо:

- знать систематизацию пломбировочных материалов;
- знать требования, предъявляемые к пломбировочным материалам;
- знать состав и свойства временных пломбировочных материалов;
- знать показания к применению временных пломбировочных материалов;
- уметь замешивать временные пломбировочные материалы;
- уметь подобрать по составу наиболее эффективные временные пломбировочные материалы в зависимости от клинической ситуации;
- иметь представление о новых компонентах, вводимых в состав временных пломбировочных материалов;

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- ознакомление с аннотациями временных пломбировочных материалов;
- замешивание временных пломбировочных материалов;
- решение ситуационных задач.

- 3. Подведение итогов:
- тестовый контроль, контрольные вопросы.

Основные понятия и положения темы:

Процесс замещения дефекта твердых тканей зуба, восстановление его анатомической формы и физиологической функции с помощью пломбировочного материала получил название - пломбирование.

Для пломбирования зубов применяются самые разнообразные по своей структуре, свойствам и назначению пломбировочные материалы. В литературе описаны несколько систематизации пломбировочных материалов:

А.И. Рыбаков, В.С. Иванов делят все материалы на две группы:

- 1. временные,
- 2. постоянные.
- М.М. Тернер выделяет четыре группы пломбировочных материалов:
- 1. постоянные материалы для восстановления анатомической формы и функции зуба,
- 2. временные материалы для закрытия полости зуба в процессе лечения,
- 3. материалы для прокладок под постоянные,
- ,4. материалы для заполнения корневых каналов.
- В.И. Лукьяненко и соавторы выделяют две группы материалов:
- 1. восстановительные пломбировочные материалы,
- 2. лечебно-профилактические пломбировочные материалы.

Основные требования к временным пломбировочным материалам:

- 1. Не должны раздражать пульпу зуба и другие ткани;
- 2. Не должны инактивировать лекарственные вещества, оставляемые в полости зуба под повязкой;
- 3. Должны обеспечивать герметичное закрытие кариозной полости на необходимый срок (не менее 1-2 недели);
- 4. Должны легко вводиться и удаляться из кариозной полости.
- В настоящее время предложена следующая классификация стоматологических пломбировочных материалов:
- І. Для временных пломб
- II. Для постоянных пломб
- 1. Цементы
- 2. Металлосодержащие
- 3. На основе искусственных смол
- 4. Вкладки
- III. Для прокладок,
- 1. Лечебные
- 2. Изолирующие
- 3. Адгезивы
- IV. Для пломбирования корневых каналов
- 1. Пластичные нетвердеющие
- 2. Пластичные твердеющие
- 3. Твердые (штифты)

Пломбировочные материалы для временных пломб

Эти материалы применяют в тех случаях, когда нецелесообразно или невозможно в один сеанс закончить лечение кариеса и его осложнений. Используют их также для изоляции лекарственных прокладок, лекарственных вложений в коронковую полость или корневых каналах, для временной фиксации коронок и мостовидных протезов.

Современные материалы для временных пломб имеют следующие характеристики:

- легко замешиваются и легко вводятся в полость;
- сохраняют герметизацию, надежное краевое прилегание "на период нахождения в зубе;
- индифферентны к окружающим тканям;
- достаточно легко извлекаются из полости;
- рентгеноконтрастны;
- не инактивируют лекарственные вещества.

Временные пломбы накладывают непосредственно на очищенные, высушенные дно (лечебную прокладку) и стенки, заполняя всю полость. При этом воссоздание анатомической формы зуба и контактного пункта обязательно.

Показания к наложению временных пломб: лечение глубокого кариеса (метод отсроченного пломбирования), лечение пульпита биологическим методам и витальной ампутацией, временное пломбирование после заполнения корневого канала.

Временные пломбы предназначены для кратковременной изоляции (от 1 - 3 дней до 2 - 3 недель, иногда более длительное время) сформированной и обработанной кариозной полости с целью сохранения медикамента, оставленного на дне, в устье корневого канала или в каналах зуба непосредственно. Кроме того, временные пломбы накладывают в случае отсроченного лечения на более длительное время.

Временные пломбы из полости зуба удаляют экскаватором, зондом или при помощи вращающегося бора.

Ниже даны краткие характеристики некоторых временных пломбировочных материалов, используемых в настоящее время в стоматологической практике:

- *искусственный дентин*, представлен в виде порошка обезвоженного сульфата цинка 24%, каолина 10%, оксида цинка- 66%, замешанного на воде (Temporary water cement (PD) -временный водный дентин);
- дентин антисептический, представляет собой водозатворимый кальцийсодержащий цинк-сульфатный цемент, модифицированный добавками. В качестве антисептической добавки введено порошкообразное серебро, обладающее бактерицидными свойствами и не окрашивающее зуб.
- *дентин паста*, состоит из порошка цинксульфатного цемента, замешанного на персиковом, абрикосовом или гвоздичном масле. Дентин паста включает ароматические вещества (цитрон, мята), пластификаторы, пищевые красители. Обладает антисептическим и водоотталкивающим свойствами (Temporary cement in paste (PD)- дентин-паста, Cimpat(Septodont) дентин-паста).

- Septo -Pack, (Septodont) пластичная самотвердеющая паста, содержащая в своей массе волокна. Показания к применению: временное пломбирование, при кариесе в пришеечной области оттеснение десны перед пломбированием, лечебно-защитный компресс для десен при локальной формепародонтита и др.;
- *Quickset* (Septodont) быстрозатвердевающий материал временных пломб. Состоит из порошка (окись цинка, экедепиенты) и жидкости (эвгенол, эксцепиенты).

Сравнительная характеристика временных пломбировочных материалов

	Искусственный дентин	Дентин-паста
	Порошок: сульфат цинка 24% каолин 10% оксид цинка 66% Жидкость: дистиллированная вода	Порошок искусственного дентина, замешанный на растительном масле (абрикос, персик, гвоздика).
При- готов ле- ние:	На шероховатой поверхности стеклянной пластинки добавляют порошок к воде до получения пастообразной консистенции, в течение 30 секунд.	Готовиться в промышленных условиях.
Свой-	- Твердеет в полости зуба в течение 2 - 3 минут; - индифферентен к тканям зуба и лекарственным веществам; - недостаточная прочность, сохраняется в полости рта несколько дней; - слабая прилипаемость к твёрдым тканям зуба.	- Твердеет в полости рта в течении нескольких часов (5-12); - обладает антисептическим и слабым анальгези-рующим действием; - более прочна, сохраняется в полости рта несколько недель; - хорошая прилипаемость во влажной среде, водоотталкивающие свойства.
Пока- зания к при- мене- нию	- В качестве повязки для временного закрытия лекарственных средств в кариозной полости; - как изолирующая прокладка между лекарственными препаратами и пломбой; - для временной фиксации коронок.	В качестве временной пломбы, для закрытия кариозной полости при незавершённом лечении.

Светоотверждаемые временные пломбировочные материалы.

- Cimpat LC -материал для временного пломбирования, представляющий собой однокомпонентный цемент. Показания: временное пломбирование, пломбирование полости под вкладку.

Clip (Septodont) - материал для временных пломб на основе полиуретанакрилатного полимера и диоксида кремния. Показания к применению: временные пломбы при лечении глубокого кариеса, при отсроченном методе пломбирования (до 3 месяцев).

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Пломбировочные материалы для временных пломб:
- а) это материалы, которые применяются стоматологом в случаях, когда по клиническим соображениям нецелесообразно или невозможно в один сеанс закончить лечение кариеса и его осложнений
- б) применяется для изоляции лекарственных прокладок, оставленных на дне кариозной полости, в пульповой камере или на устьях корневых каналов
 - в) все верно
- 2) Дентин- паста, в отличие от искусственного дентина обладает следующими свойствами:
 - а) твердеет в течение 3-5 минут
 - б) обладает большей механической прочностью
 - в) окрашивает твердые ткани зуба в бледно-розовый цвет
 - г) твердеет в полости рта в течение нескольких часов
- 3) Заполнение кариозной полости материалом сроком на 1-14 суток с целью защиты лекарства от слюны является:
 - а) временной пломбой
 - б) повязкой
 - в) реставрацией
- 4) Начало «схватывания» искусственного дентина после замешивания наступает:
 - а) через 1,5-2 минуты
 - б) через 3-4 минуты
 - в) через 30-40 секунд
- 5) Жизнеспособность формовочной массы это
- а) время, которое позволяет врачу-стоматологу ввести пломбировочную массу в кариозную полость, притереть к стенкам и дну, сформировать недостающую часть зуба
- б) состояние, которое зависит от коэффициента термического расширения и адгезии к тканям зуба
- 6) Требования, предъявляемые к пломбировочным материалам для временных пломб:
- а) должны быть достаточно прочными и индифферентными к пульпе зуба и слизистой оболочке полости рта
- б) должны обеспечивать герметичное закрытие дефекта не менее, чем на 3 суток
- в) должны быть пластичными, легко вводиться и выводиться из кариозной полости
 - г) не должны инактивировать лекарственные вещества
 - д) все верно
- 7) Оптимальная густота замеса пломбы влияет на:
 - а) механическую прочность
 - б) химическую устойчивость
 - в) срок службы пломбы

- г) все верно
- 8) Заполнение кариозной полости материалом на срок 1-6 месяцев для образования достаточного слоя заместительного дентина является:
 - а) временной пломбой
 - б) повязкой
 - в) постоянной пломбой
 - г) реставрацией
- 9) Срок службы пломбы из дентин-пасты:
 - а) 7-10 суток
 - б) 24 часа
 - в) 2 суток
- 10) На какой жидкости замешивают искусственный дентин?
 - а) 30% водном растворе ортофосфорной кислоты
 - б) 30-50% растворе полиакриловой кислоты
 - в) дистиллированной воде
 - г) глицерине
 - д) 10% растворе ортофосфорной кислоты
- 11) Срок службы пломбы из искусственного дентина:
 - а) 7-10 суток
 - б) 24 часа
 - в) 1-3 суток
- 12) Дентин-паста состоит из:
 - а) искусственного дентина
 - б) ароматических веществ
 - в) глицериновазелиновой основы
 - г) все верно
- 13) Какие из перечисленных пломбировочных материалов относятся к груп-пе материалов для временных пломб?
 - а) дентин-паста
 - б) кальмецин
 - в) искусственный дентин
 - г) силидонт
- 14) Истираемость пломбы это
 - а) потеря массы пломбы
 - б) разрушение пломбы
 - в) уменьшение в объеме
- 15) Порошок искусственного дентина замешивают на воде на:
 - а) шероховатой стороне стеклянной пластинки металлическим шпателем
 - б) гладкой стороне металлическим шпателем
 - в) шероховатой стороне пластмассовым шпателем
- 16) Искусственный дентин замешивают до консистенции:
 - а) пасты
 - б) густой сметаны
 - в) глины

Задачи.

- 1. При лечении хронического пульпита по медицинским показаниям необходимо наложить девитализирующую пасту. На столике находится: «искусственный дентин», «дентин-паста», «фосфат-цемент». Из какого материала приготовите повязку?
- 2. При лечении глубокого кариеса была наложена лечебная прокладка на 14 дней. На столике находятся: «искусственный дентин», «дентин-паста», «фосфат-цемент». Наиболее оптимальный материал для временной пломбы?

Список тем по УИРС:

- 1. Состав, свойства, применение временных пломбировочных материалов.
- 2. Преимущества светоотверждаемых временных пломбировочных материалов.
- 3. Систематизация пломбировочных материалов.

Тема №8: ЦЕМЕНТЫ, КЛАССИФИКАЦИЯ. ЦИНК-ФОСФАТНЫЕ, ПОЛИКАРБОКСИЛАТНЫЕ ЦЕМЕНТЫ, СОСТАВ, СВОЙСТВА, ТЕХНИКА ПРИМЕНЕНИЯ.

Значение изучения темы: в последнее время исследования в области стоматологического материаловедения привели к созданию значительного количества новых пломбировочных материалов. Разработаны более совершенные методы их применения, расширились представления о процессах происходящих в материалах при их приготовлении, получены новые данные о взаимодействии стоматологических материалов с тканями организма. Вопросы, изученные в разделе стоматологического материаловедения, помогут врачу в выборе пломбировочного материала, а значит и в качественном оказании стоматологической помощи.

Цели занятия: на основе знаний о составе цементов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых цементных пломбировочных материалов и проводить назначение различных видов в зависимости от цели и задач лечебных мероприятий в конкретной клинической ситуации.

Для этого необходимо:

- знать состав и свойства цементов;
- уметь замешивать цинк-фосфатный и поликарбоксилатный цементы;
- уметь подобрать по составу наиболее эффективные группы цементов в зависимости от клинической ситуации;
- уметь наложить изолирующую прокладку;
- иметь представление о новых компонентах, вводимых в состав цементов;

План изучения темы:

- 1. Контроль исходных знаний.
- 2. Самостоятельная работа:
- ознакомление с аннотациями различных групп цементов;
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Основные требования к постоянным пломбировочным материалам:

- 1. Индифферентность к тканям зуба, слизистой оболочке и организму в целом (биологическая переносимость);
- 2. Высокая механическая прочность, близкая к твёрдости эмали зуба и устойчивость к жевательным нагрузкам;
- 3. Высокая химическая устойчивость в условиях полости рта;
- 4. Хорошая адгезия к твёрдым тканям зуба;
- 5. Низкая термодеформативность, сохранение формы и объёма пломбы при функционировании;
- 6. Высокая стабильность цвета пломбы.

Согласно международной классификации стоматологические цементы подразделяются в зависимости от химического состава на следующие группы:

- цинк-фосфатные,
- силикатные,
- силико-фосфатные,
- цинкоксидэвгенольные,
- цинксульфатные,
- поликарбоксилатные,
- полимерные,
- стеклоиономерные,

Цинк-фосфатные цементы

Цинк-фосфатные цементы наиболее часто используются как изолирующий материал под постоянные пломбировочные материалы, реже - как постоянная пломба под искусственную коронку или как материал для заполнения корневого канала.

Отечественная промышленность выпускает широкий ассортимент цинкфосфатных цементов: Унифас, Висцин, Фосцин, Фосцин бактерицидный, Уницем, Уницем бактерицидный и другие.

Известны также цинк-фосфатные цементы зарубежных фирм: Adhesor, Argil (Чехия), Tenet, Phosphacap (Германия), Elite Cement 100 (Япония) и др.

Цинк-фосфатные цементы состоят из порошка и жидкости, реагирующих друг с другом во время смешивания с образованием цементной массы. Порошок фосфат-цемента состоит в основном из окиси цинка (75 - 90%) с небольшими добавками оксидов кремния, магния, висмута. Жидкость цинкфосфатного цемента - водный раствор 30-40% ортофосфорной кислоты, содержащей фосфаты цинка, алюминия, магния. Каждый из вышеперечисленных фосфатных цементов отличается строго определенным составом порошка, режимом термической обработки шихты и соответствующими показателями физико-химических и механических свойств.

Основные свойства цинк-фосфатных цементов:

- незатвердевший цемент обладает хорошей прилипаемостью к тканям зуба, но после полного твердения, адгезия ухудшается и цемент удерживается в полости только за счет механического сцепления с тканями зуба.
 - механическая прочность не высока,

- длительный контакт с ротовой жидкостью приводит к растворению частиц цемента,
- мало токсичен для пульпы зуба, но его первоначальная кислотность высока (3,6 через 3 мин. от начала замешивания),что может вызвать раздражение пульпы при глубокой кариозной полости,
- обладает низкой теплопроводностью, является эффективным термоизолятором.

Техника приготовления:

Соотношение порошок/жидкость фосфатного цемента для приготовления прокладки составляет 1,5 - 2,0 г порошка на 0,5 мл жидкости (в комплекте «Унифас» соответствует 2 мерникам порошка и 5 - 6 каплям жидкости). Замешивание рекомендуется проводить при температуре воздуха 18 - 23(С, при более высокой температуре следует охладить стеклянную пластинку.

Порошок делят на 4 части, одну четверть делят пополам и одну из восьмых - опять пополам. Сначала вводят в жидкость четвёртую часть порошка, тщательно перемешивают линейными движениями по большой поверхности стекла в течение 30 сек, после получения гомогенной массы к ней добавляют последовательно оставшиеся 2 четверти (перемешивая по 15 сек),1 восьмую и 2 шестнадцатых части (перемешивая по 10 сек каждую). Время замешивания не должно превышать 90 сек., правильно замешанная формовочная масса фосфатного к цемента при отрыве от неё чистого конца шпателя не тянется за ним, а обрывается, образуя зубцы 1 - 2 мм.

Материал обладает пластичностью 1,5-2 мин и затвердевает в полости через 4-5 мин. Фосфатный цемент в пластичном состоянии гладилкой вводят 1-2 порциями в кариозную полость, с тщательной конденсацией штопфером к стенкам полости. Необходима полная изоляция материала от слюны при внесении в кариозную полость.

Поликарбоксилатный цемент

Поликарбоксилатный цемент представляет собой систему «порошок-жидкость». Порошок это модифицированный оксид цинка с добавлением окиси магния, жидкость — водный раствор полиакриловой кислоты.

Основные свойства поликарбоксилатного цемента:

- обладает выраженной адгезией, так как карбоксилатные группы кислоты обеспечивают химическую связь цемента с тканями зуба,
- полиакриловая кислота не оказывает раздражающего действия на пульпу зуба,
- обладает меньшей растворимостью в среде полости рта, чем фосфатный цемент,
 - механическая прочность не высока,
 - обладает низкой теплопроводностью.

Поликарбоксилатный цемент применяется в качестве изолирующих прокладок, временных пломб, для фиксации ортопедических конструкций.

Отечественные поликарбоксилатные цементы: Белокор, Ортофикс Поликарбоксилатный цемент.

Зарубежные поликарбоксилатные цементы: Adhesor Carboflne, Durelon

(Чехия), Carboxylat Cement (Германия), Carbolit 100 (Япония). *Техника приготовления:*

Для замешивания поликарбоксилатного цемента в консистенции для прокладок на гладкую поверхность стеклянной пластинки помещают один мерник порошка (имеется в комплекте) и две капли жидкости, смешивается в течение 20 -30 секунд. Для максимального использования адгезивных свойств цемента вносить в кариозную полость его нужно в течение 1,5-2 минут от начала замешивания. Полученная масса может быть использована, пока она имеет блестящую поверхность.

Бактерицидные цементы

- Уницем универсальный усовершенствованный цинкфосфатный стоматологический цемент, обладающий высокими показателями механической прочности и химической устойчивости. Порошок состоит из окис цинка, смодифицирующими добавками, а жидкость из ортофосфорной кислоты сниженной активности.
- Уницем бактерицидный универсальный усовершенствованный цинкфосфатный стоматологический цемент, содержащий оптимальное количество бактериостатически эффективной формы серебра. Применяется в детской стоматологии для пломбирования временных зубов.
- Фосфат-цемент, содержащий серебро. Для улучшения бактерицидных свойств, в состав порошка вводят серебро(1,547%). Материал рекомендуется в качестве изолирующей прокладки при пломбировании моляров металлическими и другими пломбами, для пломбирования каналов, в детской стоматологии для пломбирования временных зубов. Аналоги: Уницем бактерицидный (Владмива).
- *Висфат-цемент* относится к цинк-фосфатным цементам.В его порошке около 3% оксида висмута. Он быстрее твердеет, более прочен, чем фосфат-цемент, и менее растворим. Применяется в качестве изоляционной прокладки при пломбировании зубов металлическими пломбами, силикатными цементами, акриловыми и эпоксидными смолами.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Универсальным цинк—фосфатным цементом является:
 - а) Фосфат
 - б) Висфат
 - в) Унифас
- 2) Оптимальное соотношение порошка фосфат-цемента к жидкости:
 - a) 1:1
 - 6) 5:1
 - в) 4:1
- 3) Модификации цинк-фосфатного цемента:
 - а) Фосфат
 - б) Силикап
 - в) Висфат

- г) Лактодонт
- д) Унифас
- 4) Является ли обязательным наложение изолирующей прокладки при пломбировании силикатным цементом?
 - а) да
 - б) нет
- 5) Силицин предназначен для пломбирования кариозных полостей:
 - а) 3 класса
 - б) 1 класса
 - в) 2 класса
- г) является универсальным пломбировочным материалом, предназначенным для пломбирования всех классов кариозных полостей
- 6) Силикатные и силико-фосфатные цементы замешивают на:
 - а) шероховатой поверхности стекла
 - б) гладкой поверхности стекла
 - в) выбор поверхности не принципиален
- 7) Гидросил это:
 - а) зарубежный аналог цинк—фосфатного цемента
 - б) бактериальный препарат, добавляемый в цинк-фосфатные цементы
 - в) силико-фосфатный цемент
 - г) силиконовое покрытие для пломб
- 8) К представителям силикатных цементов относятся:
 - а) Силицин
 - б) Силидонт
 - в) Силицин-2
 - г) Лактодонт
- 9) Жидкостью для всех видов цинк-фосфатных цементов является:
 - а) дистиллированная вода
 - б) водный раствор 30% ортофосфорной кислоты
 - в) полиакриловая кислота
 - г) полистирол в гваяколе
- 10) Висфат по сравнению с фосфатом обладает:
 - а) большей механической прочностью
 - б) меньшей механической прочностью
 - в) механическая прочность одинаковая у обоих материалов
- 11) Порошок фосфат-цемента при замешивании делят на:
 - а) 2 равные части
 - б) 3 равные части
 - в) 4 равные части
 - г) деление на части не показано
- 12) Оптимальное время схватывания фосфат-цемента
 - а) 2-3 минуты
 - б) 30-40 секунд
 - в) 4-8 минут

- 13) Время замешивания силикатных цементов:
 - а) 60 секунд
 - б) 40 секунд
 - в) 2 минуты
- 14 Время моделирования пломбы из силико-фосфатного цемента:
 - а) 2-2,5 минуты
 - б) 60 секунд
 - в) 3-4 минуты
- 15) Втечение какого времени следует замешивать цинк-фосфатный цемент?
 - а) 50 секунд
 - б) 60 секунд
 - в) 70 секунд
 - г) 90 секунд
 - д) 120 секунд
- 16) Формовочная масса цинк-фосфатного цемента считается правильно замешанной, если:
 - а) при отрыве от нее шпателя образуются зубцы высотой 4 мм
 - б) смесь тянется за шпателем
 - в) при отрыве от нее шпателя образуются зубцы высотой 1 мм
 - г) масса имеет блестящий вид
 - д) масса имеет сметанообразную консистенцию
- 17) При замешивании цинк-фосфатного цемента движения шпателя должны быть:
 - а) линейно-направленными
 - б) круговыми
 - в) перелопачивающими
- 18) Укажите представителей силико-фосфатных цементов:
 - а) Алюмодент
 - б) Силицин
 - в) Силицин 2
 - г) Силидонт 2
 - д) Силидонт
- 19) Эстетические свойства силикатных цементов по сравнению с силикофосфатными цементами:
 - а) гораздо хуже
 - б) значительно лучше
 - в) одинаковы
- 20) Окончательная обработка пломбы из силикатного цемента производится:
 - а) в это же посещение
 - б) через 1-2 суток
 - в) через неделю

Задачи.

- 1. На приеме пациенту был поставлен диагноз средний кариес 16. Наложена постоянная пломба из «Унифас-2». Правильно ли выбран материал?
- 2. При диагнозе «глубокий кариес 27 зуба» для прокладки был выбран цемент «Унифас-2». При температуре 28°С в кабинете замешивание цемента было прекращено, когда при отрыве чистого конца шпателя от замешанной массы образовались зубцы высотой 4 мм. Если какие-либо нарушения в технологии замешивания цемента?
- 3. Если для изолирующей прокладки при лечении «глубоко кариеса» Вам будут предложены материалы: «дентин-паста», «Adhesor», «Компалайт», что Вы используете?

Список тем по УИРС:

- 1. Классификации пломбировочных материалов.
- 2. Цинк-фосфатные цементы. Состав, свойства, техникаприменения.
- 3. Поликарбоксилатные цементы. Состав, свойства, техника применения.

Тема № 9: *СИЛИКАТНЫЕ, СИЛИКО-ФОСФАТНЫЕ ЦЕМЕНТЫ. СОСТАВ, СВОЙСТВА. ТЕХНИКА ПРИМЕНЕНИЯ.*

Значение изучения темы: существование обширного рынка современных пломбировочных материалов, постоянное появление новых образцов и групп, а также совершенствование представлений о материалах, используемых в клинической практике, приводит к необходимости постоянного обновления информации и оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе силикатных и силикофосфатных цементов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых цементных пломбировочных материалов и проводить назначение различных видов в зависимости от цели и задач лечебных мероприятий в конкретной клинической ситуации. Для этого необходимо:

- знать состав и свойства цементов;
- уметь замешивать силикатные и силико-фосфатные цементы;
- -уметь подобрать по составу наиболее эффективные группы цементов в зависимости от клинической ситуации;
- -иметь навыки наложения изолирующей прокладки, постоянной пломбы;
- -иметь представление о новых компонентах, вводимых в состав цементов;

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- ознакомление с аннотациями различных групп цементов
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Силикатные цементы представляют собой тонко измельченный продукт спекания многокомпонентной шихты, состоящей в основном из оксидов кремния и алюминия с добавлением оксида калия, фторидов кальция и натрия.

Силико-фосфатные цементы представляют собой силикатные цементы, модифицированные цинк-фосфатными цементами. По своим химическим и физическим свойствам они превосходят силикатные цементы, уступая им по эстетическим показателям.

Показатели	Силикатные цементы		Силико-фосфатные цементы		
Состав:	Порошок: тонко из- мельчённая керамиче- ская ком- позиция.	- оксид кремния; - оксид алюминия; - оксид калия; - фторид натрия; - фторид кальция; - и другие.	Порошок:	- 20 - 40% цинк- фосфатного цемента; - 60 - 80% силикатно- го цемента.	
	Жидкость:	Ортофосфорная Кислота	Жидкость:	Ортофосфорная ки- слота	
Представители отечественные:	«Сицилин», «Бела- цин», «Алюмодент».		«Силидонт», «Лакто- донт», «Беладонт».		
зарубежные:	«Fritex» (Чехия), «Silicap» (Германия).		«Infantid» (Чехия), «Posterit Cement» (Япония).		
Свойства:	1. Непродолжительное время удовлетворительные эстетические свойства, пломба обладает блеском и прозрачностью, подбирается под цвет зуба. 2. Хрупкий, механические свойства недостаточны для жевательной нагрузки. 3. Высокая токсичность для пульпы. 4. Высокая растворимость в среде полости рта (0,53%). 5. Усадка при твердении (0,13%). 6. Коэффициент термического расширения близок к таковому тканей зуба. 7. Высокое содержание фторидов, что обеспечивает противокариозное действие. 8. Дешевы в производстве и просты в применении.		вый цвет. 2. Более прочный, выдерживает жевательную нагрузку на премолярах. 3. Менее токсичен для пульпы. 4. Меньшая растворимость в полости рта (0,36%). 5. Усадка при твердении 0,11%. 6. Коэффициент термического расширения к таковому ткани зуба 7. Содержание фторидов меньше. 8. Дешевы в производстве и просты в применении.		
Показания к применению:	Кариозные полости 111 и V классов.		Кариозные полости III класса (если полость не выходит на вестибулярную поверхность). Полости I и II класса на премолярах.		

Способ пригстовл	ения	
1. Соотношение порошок/ жид-кость:	1,25 1,55 г на 0,4 мл на гладкой поверхности стеклянной пластинки пластмассовым шпателем.	1,25 - 1,55 г на 0,4 мл на гладкой поверхности стеклянной пластинки пластмассовым или металлическим шпателем.
2. Время замешивания:	60 секунд	60 секунд
3. Техника:	Порошок вносят в жидкость большими порциями, что бы реакция между окисью кремния и фосфорной кислотой начиналась одновременно.	Порошок вносят в жидкость мел- кими порциями, чтобы более полно протекал процесс химического взаимодействия между компонен- тами смеси.
4. Консистенция формовочной массы:	Блестящий вид, при отрыве шпателя масса не тянется, а обрывается, образуя зубцы до 2 мм.	При отрыве шпателя масса не тянется, а обрывается, образуя зубцы до 1 мм.
Время моделиро- вания пломбы.	1,5-2 минуты.	2 - 2,5 минуты,
Время твердения материала.	5-6 минут.	4-5 минут.
Техника внесения в кариозную полость.	I - 2 порциями изолировать от слюны.	Мелкими порциями с тщательной конденсацией и притиранием к стенкам полости, изолировать от слюны.
Окончательная обработка плом- бы:	Через 1 - 2 суток.	Через сутки.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) При замешивании цинк-фосфатного цемента движения шпателя должны быть:
 - а) линейно-направленными
 - б) круговыми
 - в) перелопачивающими
- 2) Укажите представителей силико-фосфатных цементов:
 - а) Алюмодент
 - б) Силицин
 - в) Силицин 2
 - г) Силидонт 2
 - д) Силидонт
- 3) Эстетические свойства силикатных цементов по сравнению с силикофосфатными цементами:
 - а) гораздо хуже
 - б) значительно лучше

- в) одинаковы
- 4) Окончательная обработка пломбы из силикатного цемента производится:
 - а) в это же посещение
 - б) через 1-2 суток
 - в) через неделю
- 5) Порошок силикатного цемента вносят в жидкость:
 - а) мелкими порциями
 - б) большими порциями
- 6) Поликарбоксилатный цемент является альтернативой:
 - а) цинк-фосфатному цементу
 - б) силикатному цементу
 - в) силико-фосфатному
 - г) стекло-иономерному цементу
- 7) Порошок «диоксивисфат» представляет собой:
- а) порошок «Висфата» с добавлением бактериального препарата диоксидина
- б) порошок «Фосфата» с добавлением бактериального препарата диоксидина
 - в) диоксидин с добавлением солей серебра и «Висфата»
- 8) Порошок искусственного дентина состоит из сульфата и оксида цинка в соотношении:
 - а) 3:1 и 5-10% каолина
 - б) 2:1 и 5-10% каолина
 - в) 1:1 и 5% каолина
- 9) Универсальным цинк—фосфатным цементом является:
 - а) Фосфат
 - б) Висфат
 - в) Унифас
- 10) Оптимальное соотношение порошка фосфат-цемента к жидкости:
 - a) 1:1
 - 6) 5:1
 - \mathbf{R}) $4 \cdot 1$
- 11) Модификации цинк-фосфатного цемента:
 - а) Фосфат
 - б) Силикап
 - в) Висфат
 - г) Лактодонт
 - д) Унифас
 - е) Алюмодент
- 12) Является ли обязательным наложение изолирующей прокладки при пломбировании силикатным цементом?
 - а) да
 - б) нет

- 13) Силицин предназначен для пломбирования кариозных полостей:
 - а) 3 класса
 - б) 1 класса
 - в) 2 класса
- г) является универсальным пломбировочным материалом, предназначенным для пломбирования всех классов кариозных полостей
- 14) Силикатные и силико-фосфатные цементы замешивают на:
 - а) шероховатой поверхности стекла
 - б) гладкой поверхности стекла
 - в) выбор поверхности не принципиален
- 15) К представителям силикатных цементов относятся:
 - а) Силицин
 - б) Силидонт
 - в) Силицин-2
 - г) Лактодонт

Задачи.

- 1. При лечении «глубокого кариеса 46 зуба» была наложена постоянная пломба из цемента из материала «Силицин». Правильно ли выбран материал?
- 2. При лечении «среднего кариеса 11 зуба», III класс по Блэку, была наложена постоянная пломба из цемента «Силидонт». Правильно ли выбран материал?
- 3.Для постоянной пломбы, при лечении «среднего кариеса 34 зуба», V класс по Блэку, предлагается: «фосфат-цемент», «Силидонт», «Fritex», «Беладонт». Подберите наиболее оптимальный материал?

Список тем по УИРС:

- 1. Классификации пломбировочных материалов.
- 2. Силикатные цементы. Состав, свойства, техника применения.
- 3. Силико-фосфатные цементы. Состав, свойства, техника применения.

Тема№ 10: *СТЕКЛОИОНОМЕРНЫЕ ЦЕМЕНТЫ. СОСТАВ, СВОЙСТВА, ТЕХНИКА ПРИМЕНЕНИЯ.*

Значение изучения темы: существование обширного рынка стеклоиономерных цементов, постоянное появление новых образцов, а также совершенствование представлений о материалах, используемых в клинической практике, приводит к необходимости постоянного обновления информации и оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе и свойствах стеклоиономерных цементов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых цементных пломбировочных материалов и проводить назначение различных видов в зависимости от цели и задач лечебных мероприятий.

Для этого необходимо:

- знать состав и свойства стеклоиономерных цементов;
- уметь замешивать стеклоиономерные цементы;

- уметь подобрать по составу наиболее эффективные группы цементов в зависимости от клинической ситуации;
- уметь наложить изолирующую прокладку, пломбу из стеклоиономерных цементов;
- иметь представление о новых компонентах, вводимых в состав цементов;

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- ознакомление с аннотациями стеклоиономерных цементов;
- освоение методики замешивания стеклоиономерных цементов;
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Стеклоиономерные цементы

Изобретение в 1969 г. Вильсоном и Кентом (Wilson, Kent) стеклоиономерного цемента стало исходным пунктом интенсивного развития стоматологического материала нового класса. За двадцать лет использования стеклоиономерных цементов был достигнут значительный прогресс в усовершенствовании их характеристик. Пломбы, изготовленные из первых образцов этих материалов, обладали малой устойчивостью, их качество в значительной мере зависело от технологии нанесения материала. Однако, по мере усовершенствования, степень фиксации материала была увеличена, кроме того, было обнаружено, что стеклоиономерные пломбы, как правило, имеют очень низкий процент вторичного кариеса. В течение длительного времени считалось, что причиной этого феномена является выделение данными материалами фтора, являющегося побочным продуктом реакции отверждения. Однако проведенные исследования искусственного кариеса показали, что выделяющие фтор пластмассы не обладают столь же высокой способностью приостанавливать кариес. Это указывает на то, что кариес статический эффект определяется всей совокупностью свойств, присущих стеклоиономерным материалам, а не только выделениям фтора. Фактом является то, что стеклоиономерные цементы обеспечивают определенную степень защиты от кариеса, оказывают реминерализирующее воздействие на дентин и эмаль, как правило, хорошо совместимы с пульпой и обладают хорошей адгезией к структуре зуба без использования кислотного протравливания.

Несмотря на то, что обычные стеклоиономерные цементы имеют много преимуществ, они далеко не идеальны. Как и прежде, они чувствительны к обезвоживанию, преждевременному попаданию влаги, недостаточно прочны и разрушаются в условиях ротовой полости. Создание стеклоиономера ЗМ Vitrebond (Витребонд) - первого светоотверждаемого стеклоиономерного прокладочного материала, ознаменовало коренные изменения в стеклоиономерной технологии. Обычные стеклоиономерные цементы содержат жидкость (обычно это полиакриловая кислота) и фтор содержащий алюмосиликатный порошок. При смешивании этих компонентов начинается кислотно-

щелочная реакция отверждения. В прокладочном материале ЗМ Vitrebond молекулы полиакриловой кислоты несколько модифицированы, благодаря этому становится возможной полимеризация молекул (как и при отверждении композитных материалов). Это означает, что помимо кислотно-щелочной реакции, обеспечивающей выделение фтора и стеклоиономерные характеристики, в материале происходит реакция полимеризации. Значительные улучшения характеристик материала обнаруживаются сразу же при лабораторном тестировании в клинической практике; материал отвердевает за 30 секунд и не трескается при обдувании воздухом. Внутренняя прочность материала возросла почти на 300%! Исследования показали, что при использовании в качестве прокладки под композитами, этот материал способен скомпенсировать усадку, возникающую при полимеризации, до 75%, при использовании под амальгамой он помогает предотвратить вторичный кариес - основную причину выпадения пломб из амальгамы.

Классификация стеклоиономерных цементов

По показаниям к использованию:

- 1. Восстановительные (реставрационные):
- для эстетических реставраций (3, 5 классы),
- для нагруженных реставраций (1,2 классы, создание культи зуба, сэндвичтехника).
- 2. Подкладочные (лайнинговые):
- изолирующие подкладки.
- 3. Фиксационные (лютинговые) для фиксации коронковых вкладок, накладок, мостов.
- 4. Керметы цементы, модифицированные серебром.По технике полимеризации:
- самоотверждаемые,
- светоотверждаемые,
- комбинированные (двойного, тройного отверждения). По форме выпуска:
- водные системы,
- безводные системы,
- полуводные системы.

Клиническое использование

Стеклоиономерные материалы занимают достойное место в современной стоматологической практике. Это открывает для стоматологов возможности более широкого выбора материалов.

Композиты и адгезивы применяются для пломбирования зубов уже в течение очень длительного времени. Их долговечность и прекрасно сохраняющиеся эстетические характеристики проверены временем. Поэтому этим материалам следует отдать предпочтение в случаях пациентов с удовлетворительной гигиеной ротовой полости и когда можно обеспечить надлежащую технологию применения материала. В случае неудовлетворительной гигиены ротовой полости, а также, если обеспечить надлежащую технологию нанесения композитного материала сложно, следует отдать предпочтение стеклоиономерным цементам (Vitremer «3 М», Fuji IX «GC», Cetac Molar «ESPE»).

Например, при работе с детьми, как правило, сложно исключить попадание слюны в препарируемую полость, поэтому в этом случае проще использовать стекло-иономер вместо амальгамы.

Стеклоиономерные цементы успешно применяются в А.R.Т. технологии (Fuji IX «GC», Cetac Molar «ESPE»). Метод А.R.Т.- это наиболее щадящий и наименее инвазивный подход для остановки дальнейшего прогресса кариеса. Он подразумевает удаление мягкого, деминерализованного дентина ручным инструментом с последующим восстановлением полости стеклоиономерным цементом, который одновременно запечатывает все оставшиеся фиссуры. С самого начала развития и применения А.R.Т., ценность этого метода в различных ситуациях была полностью оправдана. Техника А.R.Т. исследовалась в многочисленных экспериментах в разных странах. Результаты, которые были опубликованы в научной литературе, показывают, что этот метод жизнеспособен и приемлем во всем мире.

Химический состав стеклоиномерных цементов. Стекло состоит из основных компонентов - кварца, оксида алюминия и фторида кальция, а также фосфата алюминия, фторида натрия и криолита как дополнительных составляющих. Выбор той или иной формулы стекла зависит от таких ожидаемых свойств, как образование цемента, точки плавления, растворимости и выделения ионов фторида, прозрачности и прочности. Так, высокое содержание кварца (> 40%) обеспечивает высокую степень прозрачности стекла, тогда как большое количество фторида кальция или оксида алюминия делает материал непрозрачным. При этом речь идет о дисперсных кристаллических фазах плавикового шпата и корунда, которые следует рассматривать, скорее всего, не как стекло, то есть переохлажденную глазурь, а как стеклокерамику с аморфной основной структурой.

Второй компонент стеклоиономерного цемента, являющийся также составной частью его названия - это так называемые, ионные полимеры.

Для их изготовления используются лишь три ненасыщенные карбоновые кислоты: акриловая, итаконовая и малеиновая. Так, в процессе радикальной полимеризации получают водный раствор сополимерной кислоты. Наряду с остаточными мономерами он содержит широкий спектр полимерных цепей разной «длины». Если для образования цепи берут мономер только одного вида, то получают так называемый гомополимер, тогда как применение двух или нескольких приводит к образованию сополимерной кислоты.

Сцепление с эмалью и дентином вызвано механическимии химическими силами. Микросцепление значительно усиливается химическим соединением сополимерной кислоты сгидроксиапатитом. Одновременно с высокоэффективным образованием водородных связей полярных структурных элементов составляющих стеклоиономера проходит хелатизацияионов Са твердых тканей зуба.

Таким образом, основными факторами для дальнейшего развития стекло-иономерных цементов были и остаются:

- стабильность;
- биосовместимость;

- эстетика;
- выделение ионов фтора;
- молекулярное сцепление с дентином;
- коэффициент термического расширения, сходный со свойствами тканей зуба;
- практичность применения.

С учетом последнего разработан новый класс материала стеклоиономерные цементы двойного отверждения.

Альтернативой амальгаме, т.е. пломбированию зубов без применения основ, содержащих сплавы, до настоящего времени были два, по химическим свойствам, разных класса материалов - стеклоиономерные цементы и композиты. У них были ограничивающие факторы, базирующиеся главным образом на химической структуре основы. Так, стеклоионо-мерные цементы, как уже было показано, это водные системы, обеспечивающие значительное приставание к влажному дентину и, таким образом, молекулярное сцепление с твердой тканью зуба. В связи с этим следует отметить как кариесстатическое действие фторсодержащих цементов, так и их чувствительность к высыханию или вымыванию во время фазы схватывания.

Применение композитных материалов имеет весомые преимущества, сокращающие время обработки, то есть экспозецию. Однако сэндвичевые или композитные пломбы, изготовленные методом кислотного протравливания, трудоемкие, требуют абсолютной сухости кариозной полости. Получить, таким образом, эстетически совершенные и прочные пломбы можно было лишь при особенно тщательной обработке. Цель разработки совмещение преимуществ, в основном химической природы, каждого из классов материалов для получения более простого в пользовании пломбировочного материала.

Композит светового отверждения - это, по химическим свойствам, гидрофобный материал. Плохое приставание композита к гидрофильному дентину и отсутствие молекулярного сцепления ограничивают область его применения главным образом эмалью, тогда как для области дентина применяют водные (гидрофильные) цементы.

Качественный субстрат дентина двойного отверждения имеет следующие преимущества: способность приставания, выделение ионов фтора, химическое сцепление и коэффициент термического расширения, сходный с тканью зуба. Photac-bond (ESPE) - логическое продолжение разработки существующих материалов для прокладок из стекло-иономерного цемента; это - идеальная комбинация стекло-ионо-мерного цемента и композитов, то есть комплексообразование кислота-основа и полимеризация под действием света. В случае Photac-bond (ESPE) совмещается традиционная реакция стекло-иономерного отверждения со световым отверждением. После смешивания порошка и жидкости начинается типичная для стекло-иономерных цементов реакция схватывания, которая характеризуется сокращением времени отвердевания. В современном пломбировании зубов Photac-fil (ESPE)- это идеальное сочетание преимуществ стекло-иономерного цемента и светового отверждения. Этот материал, в первую очередь, пригоден для пломбирования в пришеечной области при эрозиях и клиновидных дефектах (V класс по Блэку), а также для

апроксимальных пломб за исключением участка края резца (III класс по Блэку). Его применяют для надстройки культей под коронками и мостиками, небольших окклюзионных пломб (I класс по Блэку) и пломбирования молочных зубов. Здесь также удалось сочетать характерные свойства стеклоиономерных цементов (молекулярное сцепление с твердой тканью зуба, отдача ионов фтора и др.) с качествами композитов светового отверждения (короткое время обработки, нечувствительность к высыханию, доступу воды и др).

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Укажите представителей СИЦ
 - a) fuju II
 - б) cavalite
 - в) vitrebond
 - г) адгезор
- 2) Недостатками стекло-иономерных цементов являются:
 - а) чувствительность к присутствию влаги в процессе твердения
- б) пересушивание поверхности твердеющего цемента ведет к ухудшению его свойств и может явиться причиной послеоперационной чувствительности
 - в) длительность созревания пломбы (24 часа)
- г) опасность раздражающего действия на пульпу при глубоких полостях
 - д) все верно
- 3) Окончательную отделку пломбы из стекло-иономерного цемента проводят не ранее, чем через:
 - а) 24 часа после наложения
 - б) двое суток
- 4) Наложение в одно посещение прокладки из стеклоиономера и пломбы из композита допустимо с применением:
 - а) гибридных СИЦ двойного отверждения
 - б) «классических» СИЦ
 - в) водоотверждаемых СИЦ
- 5) Порошок стекло-иономерных цементов это:
 - а) кальций-алюмосиликатное стекло с добавлением фторидов
 - б) тонко измельченная керамическая композиция
- 6) К конденсируемым (пакуемым) сиц относятся:
 - a) Ketak Molar
 - б) Fuji IX GP
 - B) Base Line
- 7) Vitrebond это
 - а) гибридный СИЦ двойного отверждения
 - б) изолирующий прокладочный материал
 - г) постоянный пломбировочный материал
- 8) СИЦ для постоянных пломб бывают:
 - а) эстетические

- б) упроченные
- в) быстротвердеющие
- г) фиссурные герметики
- 9) Показания к применению эстетических СИЦ:
 - а) пришеечные дефекты фронтальных зубов
 - б) полости 3 класса
 - в) герметизация фиссур
 - г) кариес корня
- 10) Жидкость СИЦ это:
 - а) полиакриловая кислота
 - б) ортофосфорная кислота
 - в) дистиллированная вода
- 11) Аква-цементы:
- а) водоотверждаемые цементы, т. е. замешиваемые на дистиллированной воде
 - б) полиакриловая кислота входит в состав порошка в виде кристаллов
 - в) содержат светоотверждаемую полимерную смолу
- 12) Для гибридных СИЦ характерно:
 - а) двойное отверждение
 - б) наличие в составе пластмассовой и стеклоиономерной матриц
 - в) все верно
- 13) СИЦ могут применяться для наложения прокладки:
 - а) тонкослойной (лайнерной)
 - б) базовой (восстанавливающей дентин зуба)
 - г) лечебной
- 14) К гибридным двухкомпонентным СИЦ тройного отверждения относится:
 - a) Vitremer
 - б) Ketak Molar
 - в) Fuji IX
- 15) Пролонгированное выделение фтора после пломбирования стеклоиономерным цементом продолжается:
 - а) не более недели
 - б) не менее одного года
 - в) в течении всего срока службы пломбы
- 16) «Классические » СИЦ для прокладок:
 - a) Ketak Molar
 - б) Base Line
 - в) Fuji IX

Задачи.

1. В стоматологическую поликлинику обратился пациент, возраст 16 лет. Жалобы на кратковременные боли от сладкого в 46 зубе, при осмотре были выявлены кариесогенные порожения твердых тканей жевательной группы зубов различной степени, отмечена низкая гигиена полости рта. Определить план лечения обосновать выбор материалов для лечения.

- 2. В детскую стоматологическую поликлинику обратился пациент, возраст 6 лет. Жалобы на кратковременные боли от сладкого в 75 зубе, при осмотрах проведенных ранее были выявлена низкая кариесрезистентность твердых тканей жевательной группы зубов во временном прикусе, в настоящее время пациент со смешанным прикусом. Какие профилактические мероприятия необходимо провести в отношении постоянных (жевательных) зубов. Определить план лечения обосновать выбор материалов для лечения.
- 3. В стоматологическую поликлинику обратился пациент, возраст 34 года. Жалобы на затрудненное пережевывание пищи. После осмотра выявлены разрушения коронковой части 36, 46, 47 зубов примерно до ½ объема коронки зуба, назначено ортопедическое лечение. Составьте план терапевтического лечения по восстановлению формы зуба, выберите материалы, методика работы с ними.

Список тем по УИРС:

- 1. Преимущества стеклоиономерных цементов.
- 2. Атравматическая Реставрационная Терапия кариеса зубов.

Тема № 11: *САМОТВЕРДЕЮЩИЕ КОМПОЗИЦИОННЫЕ* ПЛОМБИРОВОЧНЫЕ МАТЕРИАЛЫ

Значение изучения темы: в последнее время исследования в области стоматологического материаловедения привели к создания значительного количества новых пломбировочных материалов. Разработаны более совершенные методы их применения, расширились представления о процессах происходящих в материалах при их приготовлении, получены новые данные о взаимодействии стоматологических материалов с тканями организма. Вопросы, изученные в разделе стоматологического материаловедения, помогут врачу в выборе пломбировочного материала, а значит и в качественном оказании стоматологической помощи.

Цели занятия: на основе знаний о составе современных композиционных пломбировочных материалов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых композиционных пломбировочных материалов и проводить их назначение в зависимости от цели и задач лечебных мероприятий.

Для этого необходимо:

- знать состав и свойства композиционных пломбировочных материалов химического отверждения;
- уметь замешивать композиционных пломбировочных материалов химического отверждения;
- уметь подобрать по составу наиболее эффективные композиционные пломбировочные материалы в зависимости отклинической ситуации;
- иметь представление о новых разработках постоянно развивающихся полимерных пломбировочных материалов.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:

- ознакомление с аннотациями композиционных пломбировочных материалов;
- замешивание композиционных пломбировочных материалов химического отверждения;
 - решение ситуационных задач.
- 3. Подведение итогов: тестовый контроль.

Основные понятия и положения темы:

Систематизация композиционных пломбировочных материалов

Наиболее распространенным приемом, использующимся при проведении систематизации композиционных пломбировочных материалов, в том числе полимеризующихся под воздействием света, является учет размеров частиц неорганического наполнителя.

По величине неорганического наполнителя:

1. Макронаполненные (размер частиц неорганического наполнителя - более 1 мкм), используемые для пломбирования кариозных полостей I и II классов. Химического отверждения: «Evicrol Original» (Spofa Dental), «Consise» (3M), «Composite» (Dentstar), «Simulate II» (Kerr), «Charisma PPF» (Heraeus Kulzer).

Светового отверждения: «Призмафил» (Стомадент).

- 2. Микронаполненные (размер частиц неорганического наполнителя до 1 мкм), используемые для пломбирования кариозных полостей **III** и V классов. Светового отверждения: «Helioprogress», «Heliomolar» (Vivadent).
- 3. Гибридные (комбинация размеров частиц неорганического наполнителя различной величины, при содержании не менее 80% наполнителя размером до 1 мкм), используемые для пломбирования всех классов кариозных полостей и проведения реставраций твердых тканей зубов различной сложности. Химического отверждения: «Талан» (Стомадент), «Degufil SC Micro Hybrid» (Degussa).

Светового отверждения: «Herculate XRV», «Prodigy», «Point 4» (Kerr), «Charisma» (Heraeus Kulzer), «Tetric» (Vivadent), «Prisma TPH», «Spectrum TPH» (Dentsply), «Filtec Z 250» (3 M), «Degufil H», «Degufil Ultra» (Degussa), «Pertac» (ESPE), «Brilliant», «Arabesk Top» (VOCO).

Композиционные пломбировочные материалы применяются в стоматологии с начала 60-х годов XX века и на сегодняшний день являются самыми популярными пломбировочными материалами для постоянных пломб.

В механизме твердения композиционных материалов (КМ) лежит процесс полимеризации, то есть превращения одной молекулы в макромолекулу, мономера в полимер. Простейшим мономером, создавшим группу пластмассовых акриловых материалов, был метилметакрилат. За счет разрыва двойной связи отдельные его молекулы соединяются в полиметилметакрилат.

После создания R.L. Bowen (конец 50-х годов XX века) акрилового мономера - бисфенол-А-диглицидилметакрилата («Bis-GMA» или БисГМА) новые материалы получили широкое распространение. Данный мономер отличается способностью прочно удерживать неорганический наполнитель в матрице акриловой пластмассы.

Таким образом, основными компонентами композиционного материала являются органический мономер и неорганический наполнитель. Кроме того, в их состав входят силаны, инициаторы полимеризации, красители, пигменты, стабилизаторы.

При изготовлении современных композитов наряду с БисГМА используются и другие мономеры: UDMA - уретандиме-тилакрилаты, DGMA - декандиолдиметакрилаты, TGDMA -триэтиленгликолдиметакрилаты.

Для активации реакции полимеризации в композитах химического отвердения используется инициаторная система, состоящая из перекиси бензоила и третичных ароматических аминов.

В качестве неорганического наполнителя используются размельченные частицы бариевого стекла, кварца, фарфоровой муки, диоксида кремния и др.

Основные свойства композиционных материалов химического отверждения:

- высокие физико-механические свойства (особенно у макронаполненных и гибридных композитов),
 - хорошие эстетические свойства (у микронаполненных игибридных),
- хорошая адгезия к твердым тканям зуба и краевое прилегание пломбы при использовании адгезивных систем,
- химическая устойчивость в среде полости рта,
- полимеризационная усадка 2-4% объема пломбы,
- простая методика применения.

Для улучшения адгезии материала к эмали зуба предложено протравливание эмали фосфорной кислотой (30-40%). Это делает ее поверхность полуретенционной, увеличивает площадь соприкосновения, в эмали образуются поры глубиной5-50 мкм. Адгезив легко проникает в эти поры и осуществляет связывание эмали и композита. Образующая при этом связь очень прочная (до 20 МПа). Время протравливания 20-40 секунд.

Основная форма выпуска современных композиционных материалов «паста - паста». В комплект композита входят: две пасты - основная и каталитическая, адгезивная система - основная и каталитическая жидкости, гель для травления эмали, принадлежности: блокнот для замешивания, пластмассовые шпатели, кисточки и кисточкодержатель, расцветка материала.

Методика пломбирования КМ химического отверждения:

- препарирование кариозной полости, создание скоса эмали по всему периметру полости под 45 градусов,
 - наложение изолирующей прокладки на дно и стенкикариозной полости,
- протравливание эмали нанесение травильного геля на эмалевый край на 30 сек,
 - тщательное промывание и высушивание кариозной полости,
- нанесение адгезивной системы на эмаль и прокладку, предварительно смешав основную и каталитическую жидкость в соотношении 1:1 в течение 10 сек,
- внесение пломбировочного материала, предварительно смешав основную и каталитическую пасты в соотношении 1:1 в течение 30 сек, время отверждения материала 3-5 минут.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) К макронаполненным композиционным материалам химического отверждения относятся:
 - a) Charisma PPF
 - б) Composite
 - B) Simulate II
 - г) Charisma
- 2) Внесение ким химического отверждения рекомендуется проводить:
 - а) послойно
- б) одной-двумя порциями, тщательно прижимая материал ко дну и стенкам полости, с некоторым избытком материала
- 3) Время твердения ким химического отверждения:
 - а) 10 минут
 - б) 3-5 минуты
 - в) 1-2 минуты
- 4) Белый цвет кольца инструмента подразумевает следующее его предназначение:
 - а) сглаживание краев эмали
 - б) полирование до зеркального блеска
 - в) отделка и шлифование композиционных пломб
- 5) Основная и каталитическая пасты смешиваются в соотношении (в течение):
 - а) 1:2 (30 секунд)
 - б) 1:1 (30 секунд)
 - в) 2:1 (30 секунд)
- 6) Боры с «безопасным» кончиком:
 - а) не повреждают поверхность цемента и круговую связку зуба
 - б) имеют ультрамелкозернистое покрытие
 - в) свободны от абразивных частиц
- 7) В композиционных материалах химического отверждения полимеризация происходит:
- а) во всей толще материала, начинаясь чаще всего у более теплых стенок полости
 - б) по направлению источника света
- 8) К грубой степени абразивности относятся диски:
 - а) синие, оранжевые
 - б) черные, темно-оранжевые
 - в) голубые, светло-оранжевые
- 9) Укажите заключительный этап окончательной обработки реставрации:
 - а) контурирование реставрации
 - б) финирование реставрации
 - в) полирование пастами

- 10) Основная форма выпуска современных композиционных материалов химического отверждения:
 - а) паста-паста
 - б) порошок-жидкость
 - в) паста
- 11) Финишная световая полимеризация проводится:
 - а) по окончанию полировки пломбы
- б) после фиксации последней порции композиционного пломбировочного материала светового отверждения
- в) после окончательной полимеризации последней порции композита
- 12) К материалам химического отверждения относятся:
 - а) Компалайт
 - б) Charisma PPF
 - в) Эвикрол
 - г) Degufil
 - д) все верно
- 13) Окончательная эффективность и правильность полирования реставрации определяются:
- а) наличием зеркального блеска высушенной поверхности реставрации, не отличимой по степени блеска от естественной эмали зубов
 - б) субъективными ощущениями пациента
- 14) Укажите катализатор, активирующий химическую полимеризацию в композитах химического отверждения:
 - а) камфороквинон
 - б) бис-ГМА, перекись бензоила и амина
- 15) Штрипсы используют для обработки и полировки:
 - а) жевательной поверхности
 - б) вестибулярной поверхности
 - в) контактных поверхностей
 - г) режущего края
- 16) Для идентификации степени абразивности полировочные диски имеют:
 - а) геометрическую кодировку
 - б) цифровую кодировку
 - в) цветовую кодировку

Залачи.

- 1. Кариозные полости глубокие и средней глубины, I и II класса выберите материалы для пломбирования (макронаполненные микронаполненные, гибридные) обоснуйте выбор материалов их преимущества и недостатки, методика применения.
- 2. Пациент с некариозным поражением твердых тканей зуба во фронтальном отделе, V класса выберите материалы для пломбирования (макронаполненные микронаполненные, гибридные) обоснуйте выбор материалов их пре-имущества и недостатки, методика применения.
- 3. Выберите материалы светового отверждения для пломбирования полостей

I, II классов назовите представителей этих материалов их преимущества и недостатки перед другими светоотверждаемыми материалами?

Список тем по УИРС:

- 1. Систематизация композиционных пломбировочных материалов.
- 2. Принципы применения композиционных пломбировочных материалов.
- 3. Реставрация зубов и современные, пломбировочные материалы.

Тема занятия №12: *СВЕТООТВЕРЖДАЕМЫЕ КОМПОЗИЦИОННЫЕ ПЛОМБИРОВОЧНЫЕ МАТЕРИАЛЫ.*

Значение изучения темы: существование обширного рынка современных композиционных пломбировочных материалов, постоянное появление новых образцов, а также совершенствование представлений о материалах, используемых в клинической практике, приводит к необходимости постоянного обновления информации и оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе современных композиционных пломбировочных материалов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых композиционных пломбировочных материалов и проводить их назначение в зависимости от цели и задач лечебных мероприятий.

Для этого необходимо:

- знать состав и свойства композиционных пломбировочных материалов светового отверждения;
- уметь работать на фантомах с композиционными пломбировочными материалами светового отверждения;
- уметь подобрать по составу наиболее эффективные композиционные пломбировочные материалы в зависимости от клинической ситуации;
- иметь представление о новых разработках постоянно развивающихся полимерных пломбировочных материалов.

План изучения темы:

- 1. Контроль исходных знаний:
- строение и физиология твердых тканей зубов;
- состав, свойства, техника применения пломбировочных материалов для временных пломб;
- состав, свойства, техника применения различных групп цементов;
- состав, свойства, техника применения самотвердеющих композиционных пломбировочных материалов.
- 2. Самостоятельная работа:
- ознакомление с аннотациями композиционных пломбировочных материалов;
- замешивание композиционных пломбировочных материалов химического отверждения;
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Систематизация композиционных пломбировочных материалов

По величине неорганического наполнителя:

1. Макронаполненные (размер частиц неорганического наполнителя - более 1 мкм), используемых для пломбирования кариозных полостей I и II классов. Химического отверждения: «Evicrol Original» (Spofa Dental), «Consise» (3M), «Composite» (Dentstar), «Simulate II» (Kerr), «Charisma PPF» (Heraeus Kulzer).

Светового отверждения: «Призмафил» (Стомадент)

- 2. Микронаполненные (размер частиц неорганического наполнителя до 1 мкм), используемые для пломбирования кариозных полостей III и V классов. Светового отверждения: «Helioprogress», «Heliomolar» (Vivadent)
- 3. Гибридные (комбинация размеров частиц неорганического наполнителя различной величины, при содержании не менее 80% наполнителя размером до 1 мкм), используемые для пломбирования всех классов кариозных полостей и проведения реставраций твердых тканей зубов различной сложности. Химического отверждения: «Талан» (Стомадент), «Degufil SC Micro Hybrid» (Degussa).

Светового отверждения: «Herculate XRV», «Prodigy», «Point 4» (Kerr), «Charisma» (Heraeus Kulzer), «Tetric», «Te-Econom» (Vivadent), «Prisma TPH», «Spectrum TPH» (Dentsply), «Filtec Z 250» (3 M), «Degufil H», «Degufil Ultra» (Degussa), «Pertac» (ESPE), «Brilliant», «Arabesk Top» (VOCO).

- По структуре:
- 1. Классические светоотверждаемые композиционные пломбировочные материалы и компомеры (макро-, микронаполненные и гибридные композиты и компомеры, имеющие стандартную консистенцию и традиционную методикуприменения).
- 2. Текучие светоотвержддаемые композиционные пломбировочные материалы и компомеры. Композиты: «Revolution», «Tetric Flow», «Aeliteflow», «Arabesk Flow», «EcuFlow». Компомеры: «PrimaFlow», «DyractFlow».
- 3. Конденсируемые светоотверждаемые композиционные пломбировочные материалы.
- «Prodigy Condensable», «SureFil», «Filtek P60», «Pyramid».
- 4. OPMOKEРы (материалы на основе органически модифицированной керамики) «Definite», «Admira»

По назначению:

- 1. Светоотверждаемые композиционные пломбировочные материалы и компомеры для пломбирования кариозных полостей фронтальной группы зубов:
- микронаполненные: «Helioprogress», «Silux Plus»,
- гибридные: «Herculite XRV», «Prodigy», «Point 4», «Charisma», «Tetric», «Te-Econom», «Prisma TPH», «SpectrumTPH», «Filtec Z 250»
- 2. Светоотверждаемые композиционные материалы и компомеры для пломбирования жевательной группы зубов (I и ІІклассы):
- макронаполненные: «Призмафил»;

- конденсируемые: «Prodigy Condensable», «SureFil», «FiltekP60»;
- гибридные: «Herculite XRV», «Prodigy», «Point 4», «Charisma», «Tetric», «Te-Econom», «Prisma TPH», «SpectrumTPH», «Valux Plus», «Filtec Z 250»
- компомеры: «Dyract AP», «Elan».
- 3. Светоотверждаемые композиционные материалы и компомеры для восстановления всех групп зубов.
- - гибридные: «Herculite XRV», «Prodigy», «Point 4», «Charisma», «Tetric», «Te-Econom», «Prisma TPH», «SpectrumTPH», «Valux Plus», «Filtec Z 250»
- компомеры: «Dyract AP», «Elan».
- OPMOKEРы: «Definite», «Admira».

Условия работы: Реставрация зубов занимает много времени, поэтому желательно, чтобы пациент находился в положении лежа, такое положение создает врачу оптимальный доступ к полости рта и создает удобства пациенту. Желательно работу с композиционными материалами проводить в «четыре руки», т.е. с участием специально обученного ассистента. Обязательным условием работы является подача воды и наличие слюноотсоса (пылесоса). Желательно иметь безмаслянный компрессор, так как микрокапли масла поступают в дыхательные пути пациента и врача. Также частицы масла при вращении бора высокоскоростного наконечника неизбежно попадают на ткани зуба, что приводит к образованию тонкой масляной пленки на препарированной поверхности полости, которая является непреодолимым препятствием на пути формирования прочной адгезии между композитом и твердыми тканями зуба.

Желательно, чтобы температура воздуха в кабинете была в диапазоне 21 - 23°С. При понижении температуры композиционные материалы начинают терять свою пластичность, а при температуре выше 23 - 24°С становятся текучими, вязкими, прилипают к инструментам, что в конечном итоге сказывается на качестве пломб.

Необходимым условием качественной работы светоотверждаемыми композитами считается хороший уход пациентами за полостью рта. Необходимо отметить, что во всех случаях перед применением светоотверждаемых композиционных пломбировочных материалов следует проводить гигиеническую обработку зубов, обращая особое внимание на состояние пришеечных областей коронок и межзубных промежутков. Качественно проведенная профилактическая обработка зубов позволит наиболее точно подобрать цвет пломбировочного материала для восстановления дефекта твердых тканей зуба.

Проблема выбора цвета является одной из наиболее значимых для стоматологической практики. Современные светоотверждаемые композиционные пломбировочные материалы имеют широкую цветовую гамму. Наиболее распространенной цветовой шкалой для пломбировочных материалов является универсальная шкала «Vita Lumin» (Vita Zahnfabrik). Для облегчения процедуры подбора и оценки цвета постоянно предлагаются новые методики. В этой связи, значительный интерес представляет концепция «промежуточного цвета», представленная в новом светоотверждаемом композиционном пломбировочном материале «Synergy» (Coltene).

При определении необходимых оттенков пломбировочного материала необ-

ходимо условно делить коронку зуба на тело (основную среднюю часть коронки), шейку и режущий край (жевательную поверхность). Учитывая большую площадь вестибулярной поверхности тела зуба необходимый (основной) цвет подбирают, соответственно цвету тела. После выбора основного цвета можно выбрать необходимые оттенки для режущего края (жевательной поверхности) и шейки зуба. Естественный зуб состоит из неоднородных по своим оттенкам и прозрачности тканей. При выборе цвета пломбировочного материала следует учитывать степень прозрачности тканей зуба, которая бывает трех видов: высокая, средняя и низкая, а также необходимо ориентироваться на глубину дефекта твердых тканей зуба. Цвет восстанавливаемого зуба зависит от его расположения в зубной дуге. Боковые зубы имеют больше желтоватых оттенков.

Препарирование твердых тканей зубов может сопровождаться выраженной болезненностью, поэтому обезболивание, в большинстве случаев является неотъемлемым этапом работы с композиционными пломбировочными материалами.

Подготовка кариозной полости к пломбированию играет большую роль, несмотря на существование прогрессивных адгезивных технологий. Прежде всего, следует отметить отсутствие необходимости препарирования кариозных полостей по принципам Блэка, что вместе с эффективным охлаждением вращающегося инструмента водой обеспечивает максимально щадящий режим препарирования. Общепринято, что качественное препарирование кариозных полостей можно провести только при условии использования современных высокоскоростных наконечников и алмазных, или карбидновольфрамовых, вращающихся инструментов. Применение качественных боров позволяет максимально точно и наименее травматично провести формирование всех необходимых элементов полостей кариозного и не кариозного происхождения. Как правило с помощью алмазного вращающегося инструмента на эмали выполняется скос (фальц) под углом 45(, обеспечивающий максимальное раскрытие призм и увеличение адгезии и маскировки по линии «эмаль - композит». Препарирование без формирования скоса эмалевого края ведет к параллельному разрезу призменного угла и создает условие для создания краевой щели.

Изоляция операционного поля (препарированной кариозной полости) от влаги является немаловажным моментом, обеспечивающим хорошее качество реставрационных работ. Для изоляции зубов перед реставрацией максимальной эффективностью обладает коффердам. Можно использовать гигроскопичные стандартные ватные валики и ретракторы мягких тканей полости рта. Для предупреждения попадания десневой жидкости в полости, расположенные в пришеечной области зубов применяют ретракционные нити, пропитанные вазоконстриктром.

Важным этапом в подготовке кариозной полости к пломбированию композиционными пломбировочными материалами является протравливание твердых тканей зуба. Большинство стоматологов используют в своей практике 30 - 40% растворы (гели) ортофосфорной кислоты для протравливания эмали.

Вместе с тем, периодически возникают дискуссии о концентрации кислоты и времени протравливания эмали.

Осуществляя выбор времени протравливания эмали, следует ориентироваться на рекомендации, изложенные в инструкции по применению материала. Гораздо позже была предложена методика тотального протравливания твердых тканей зуба, основанием для применения технологии протравливания дентина является образование в результате препарирования полости так называемого «смазанного слоя». В состав смазанного слоя входят обломки дентинных трубочек, клетки микрофлоры полости рта, слущенные эпителиоциты. Располагаясь на поверхности дентина, смазанный слой снижает его проницаемость и препятствует образованию гибридной зоны. За счет образования гибридного слоя происходит создание высокопрочной адгезивной связи композиционного материала с дентином. Для протравливания дентина, помимо традиционной ортофосфорной кислоты можно использовать малеиновую кислоту и 10% раствор ЭДТА. Учитывая разносторонность информации об оптимальном времени протравливания дентина, как и в случае с эмалью, целесообразно придерживаться рекомендаций фирмы, выпускающий материал.

Предварительная обработка дентина различными медикаментами и составами может приводить как к повышению, так и к понижению адгезионной связи между пломбировочным материалом и дентином. Установлено, что обработка кариозной полости перед постановкой пломб из композиционных материалов не следует применять этиловый спирт, который способствует разрушению органической матрицы материалов, а также препараты, содержащие фенол и эвгенол, ингибирующие процесс полимеризации композитов.

Важным этапом подготовки кариозной полости к внесению адгезивов является процедура промывания и высушивания полости после протравливания эмали и дентина. Присутствие кислоты в недостаточно промытой кариозной полости приводит к значительному снижению адгезии композиционных материалов к тканям зуба. Считается, что для полного удаления следов ортофосфорной кислоты промывание следует осуществлять на протяжении 20 - 30 с, после чего необходимо приступить к высушиванию полости. Полость не долна быть пересушена, так как практически все современные адгезивы обладают гидрофильными свойствами и работают по принципу создания влажной адгезионной связи.

Несмотря на достаточно высокие защитные свойства современных адгезивов, применение лечебных и изолирующих прокладок признается необходимым в определенных клинических случаях.

Одним из ведущих условий правильного применения фотокомпозитов является послойная техника внесения пломбировочных материалов в кариозную полость и их поэтапная полимеризация, которая обеспечивает компенсацию полимеризационной усадки и возможность корректировки цвета материала по ходу проведения пломбирования. Ориентация слоев вносимого композита может быть различной, однако, наиболее часто встречается информация о необходимости последовательного наложения композита косыми слоями, с последующей направленной полимеризацией каждого слоя через твердые

ткани зуба. Использование такого приема фотополимеризации способствует «привариванию» пломбировочного материала к тканям зуба.

Завершающим этапом постановки композиционных пломб является окончательная обработка реставраций с помощью различных абразивных систем и нанесение на отполированную поверхность различных составов, обладающих реминерализующими свойствами.

Пломбирование зубов светоотверждаемыми композиционными пломбировочными материалами является многогранным, сложным процессом, а достижение высокого качества реставраций зависит от точного соблюдения всех необходимых клинико-технологических условий.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Классификация композитных пломбировочных материалов по механизму отверждения пломбы:
 - а) композиты химического отверждения
 - б) композиты физического отверждения
 - в) композиты светового отверждения
 - г) композиты комбинированного отверждения
- 2) Возможные осложнения при проведении окончательной обработки пломбы:
 - а) перегрев пломбы
 - б) сошлифовывание тонкого цветового слоя
 - в) нарушение созданного рельефа
 - г) все верно
- 3) Компомер требует послойного засвечивания?
 - а) да
 - б) нет
- 4) Качество обработки контактных поверхностей определяется при помощи:
 - а) дентальных флоссов
 - б) зондирования
 - в) разделительных полосок
- 5) К ормокерам относятся:
 - a) Definite
 - 6) Elan
 - в) Admira
- б) При выборе цвета пломбировочного материала необходимо учитывать:
 - а) глубину и локализацию имеющегося дефекта твердых тканей зуба
 - б) расположение восстанавливаемого зуба в зубной дуге
 - в) конституциональные, половые, возрастные признаки
 - г) верно все
- 7) Окончательная обработка реставрации:
- а) важный заключительный этап, закрепляет достигнутое врачом на предыдущих этапах работы
- б) устраняет дефекты пломбирования (поры, погрешности цветового решения)
- 8) К текучим светоотверждаемым ким относятся:

- a) Revolution
- б) Tetric Flow
- в) Dyract Flow
- 9). Для избежания перегрева тканей зуба полировка пломбы проводится:
 - а) минимальное количество времени
 - б) при периодическом смачивании обрабатываемой поверхности водой
 - в) с использованием прерывистых движений
 - г) при небольших оборотах
 - д) все верно
- 10) Компомер это пломбировочный материал, сочетающий в себе преимущества композитных материалов и стеклоиономеров
 - а) верно
 - б) неверно
- 11) Выбор цвета пломбировочного материала необходимо проводить:
 - а) после препарирования кариозной полости
 - б) после процедуры нанесения адгезивной системы
 - в) до начала процедуры реставрации или пломбирования
- 12) Вносимые слои кпм светового отверждения не должны превышать толщину более:
 - a) 1 mm
 - б) 2-3мм
 - в) 0,5 мм
 - г) 5 мм
- 13) Пломбировочные материалы для постоянных пломб включают следующие группы:
 - а) цементы
 - б) амальгамы
 - в) композиты
 - г) прокладки
 - д) изолирующие лаки
- 14) Шлифование и полирование композиционных пломб осуществляется алмазными головками, имеющими кодировку:
 - а) желтого и белого цветов
 - б) красного и белого цветов
 - в) зеленого и желтого цветов
- 15) Перечислите противопоказания к применению фотокомпозитов:
 - а) экссудативное воспаление маргинальной десны, кровоточивость
 - б) поддесневое распространение кариеса
 - в) низкая гигиена полости рта
 - г) непереносимость ультрафиолета
 - е) наличие металлических конструкций во рту
- 16) Укажите причины разгерметизации фотокомпозитной пломбы:
 - а) неправильное формирование кариозной полости
 - б) попадание слюны или крови на обработанную поверхность зуба
 - в) отсутствие бонда

- г) одномоментная полимеризация больших объемов фотокомпозита
- д) все верно

Задачи.

- 1. Пациенту была выполнена реставрация фронтальных зубов на следующий день пациент пришел с жалобами на недостаточную эстетику выполненной работы, в частности выраженное отличие цвета пломбы и тканей зуба. Определите возможные причины, и мероприятия по их предотвращению.
- 2. После проведения реставрации фронтальных зубов, спустя 2 месяца у пациента появились жалобы на изменение (потемнение) цвета реставрации. Объясните причины данного явления, какой этап в работе не был проведен, возможные пути устранения..
- 3. В стоматологическую поликлинику обратился пациент, возраст 30 лет. Жалобы на разрушение коронковой части 36 зуба, после препарирования, полость большого объема с сохранившимися истонченными эмалевыми стенками. Определите материалы для пломбирования обоснуйте их выбор, особенности пломбирования описанной полости.

Список тем по УИРС:

- 1. Систематизация светоотверждаемых композиционных пломбировочных материалов.
- 2. Принципы применения светоотверждаемых композиционных пломбировочных материалов.
- 3. Значение дентинных адгезивов при реставрации зубов композитами.
- 4. Реставрация зубов и современные пломбировочные материалы.

Тема занятия №13: *КОМПОМЕРЫ, ОРМОКЕРЫ. ОСОБЕННОСТИ СОСТАВА, ДОСТОИНСТВА И НЕДОСТАТКИ.*

Значение изучения темы: появление новых образцов современных композиционных пломбировочных материалов, используемых в клинической практике, приводит к необходимости постоянного обновления информации и оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе и свойствах современных композиционных пломбировочных материалов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых композиционных пломбировочных материалов и проводить их назначение в зависимости от цели и задач лечебных мероприятий.

Для этого необходимо:

- знать состав и свойства компомеров, ормокеров;
- уметь работать на фантомах с композиционными пломбировочными материалами светового отверждения;
- уметь подобрать по составу наиболее эффективные композиционные пломбировочные материалы в зависимости отклинической ситуации;
- иметь представление о новых разработках постоянно развивающихся полимерных пломбировочных материалов.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- ознакомление с аннотациями композиционных пломбировочных материалов;
- замешивание композиционных пломбировочных материалов химического отверждения;
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

«Компомер» - термин, производный от двух слов, - композит и стеклоиономер. В этом материале соединились воедино технологии композитов и иономеров, что привело к уникальной композиции хороших эстетических качеств, физических свойств и лёгкости в использовании.

Для понимания механизма возникновения и действия компомерной системы нужно напомнить, что неотверждённые композиты состоят из смеси мономера и порошка неорганического наполнителя, содержащего стекло. При полимеризации мономера химически инертное стекло располагается между молекулами акриловой смолы и выполняет роль усилителя. С другой стороны, стеклоиономер содержит раствор кислотного полимера и реактива, растворимого в кислоте стекла. При замешивании стекло начинает растворяться в кислотном растворе, высвобождая тем самым ионы фтора, металла и кремния. Полимер начинает связываться ионами металла, вследствие чего смесь затвердевает.

В компомерах был использован совершенно новый мономер, в составе которого были как полимеризуемые группы композитных смол, так и кислотные группы стеклоиономер-ного полимера. Первоначальная реакция отверждения происходит так же, как и у композитов, за счёт полимеризации мономера. Одновременно в присутствии воды происходит и кислотно-основная реакция стеклоиономера

Основные свойства компомеров:

- хорошо соединяются с твёрдыми тканями зуба,
- биологически совместимы с тканями зуба,
- высокая твердость, прочность,
- выделяют фтор,
- обладают хорошими эстетическими свойствами,
- стабильность цвета.

Наиболее известны такие компомеры, как «Dyract», «DyractAP», «F 2000», «Compoglass», «Hytac».

Показания к применению компомеров:

- кариозные полости 3 и 5 классов,
- небольшие кариозные полости 1 и 2 классов,
- все классы полостей временных зубов,
- некариозные поражения твердых тканей зубов,
- в качестве изолирующей прокладки,

- в качестве основы реставрации под композиционные пломбы.

Методика применения компомеров практически не отличается от методики применения композиционных материалов, за исключением того, что они могу применяться без кислотного протравливания эмали и дентина, а также вноситься в кариозную полость и полимеризоваться большими слоями.

OPMOКЕРЫ (материалы на основе органически модифицированной керамики) - «Definite», «Admira».

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Классификация композитных пломбировочных материалов по механизму отверждения пломбы:
 - а) композиты химического отверждения
 - б) композиты физического отверждения
 - в) композиты светового отверждения
 - г) композиты комбинированного отверждения
- 2) Возможные осложнения при проведении окончательной обработки пломбы:
 - а) перегрев пломбы
 - б) сошлифовывание тонкого цветового слоя
 - в) нарушение созданного рельефа
 - г) все верно
- 3) Компомер требует послойного засвечивания?
 - а) да
 - б) нет
- 4) Качество обработки контактных поверхностей определяется при помощи:
 - а) дентальных флоссов
 - б) зондирования
 - в) разделительных полосок
- 5) К ормокерам относятся:
 - a) Definite
 - 6) Elan
 - в) Admira
- 6) При выборе цвета пломбировочного материала необходимо учитывать:
 - а) глубину и локализацию имеющегося дефекта твердых тканей зуба
 - б) расположение восстанавливаемого зуба в зубной дуге
 - в) конституциональные, половые, возрастные признаки
 - г) верно все
- 7) Окончательная обработка реставрации:
- а) важный заключительный этап, закрепляет достигнутое врачом на предыдущих этапах работы
- б) устраняет дефекты пломбирования (поры, погрешности цветового решения)
- 8) К текучим светоотверждаемым КПМ относятся:
 - a) Revolution
 - б) Tetric Flow
 - в) Dyract Flow

- 9). Для избежания перегрева тканей зуба полировка пломбы проводится:
 - а) минимальное количество времени
 - б) при периодическом смачивании обрабатываемой поверхности водой
 - в) с использованием прерывистых движений
 - г) при небольших оборотах
 - д) все верно
- 10) Компомер это пломбировочный материал, сочетающий в себе преимущества композитных материалов и стеклоиономеров
 - а) верно
 - б) неверно
- 11) Выбор цвета пломбировочного материала необходимо проводить:
 - а) после препарирования кариозной полости
 - б) после процедуры нанесения адгезивной системы
 - в) до начала процедуры реставрации или пломбирования
- 12) Вносимые слои КПМ светового отверждения не должны превышать толщину более:
 - а) 1мм
 - б) 2-3мм
 - в) 0,5 мм
 - г) 5 мм
- 13) Пломбировочные материалы для постоянных пломб включают следующие группы:
 - а) цементы
 - б) амальгамы
 - в) композиты
 - г) прокладки
 - д) изолирующие лаки
- 14) Шлифование и полирование композиционных пломб осуществляется алмазными головками, имеющими кодировку:
 - а) желтого и белого цветов
 - б) красного и белого цветов
 - в) зеленого и желтого цветов
- 15) Перечислите противопоказания к применению фотокомпозитов:
 - а) экссудативное воспаление маргинальной десны, кровоточивость
 - б) поддесневое распространение кариеса
 - в) низкая гигиена полости рта
 - г) непереносимость ультрафиолета
 - е) наличие металлических конструкций во рту
- 16) Укажите причины разгерметизации фотокомпозитной пломбы:
 - а) неправильное формирование кариозной полости
 - б) попадание слюны или крови на обработанную поверхность зуба
 - в) отсутствие бонда
 - г) одномоментная полимеризация больших объемов фотокомпозита
 - д) все верно

Задачи.

- 1. В стоматологическую поликлинику обратился пациент, возраст 27 лет. После осмотра были выявлено несколько кариозных полостей III, V класса. Выберите материалы для пломбирования, обоснуйте выбор материала, методика работы с ними.
- 2. При реставрации полостей больших объемов, светоотверждаемыми материалами, в целях экономии последних какие материалы и методы возможно применить.
- 3. Возможно ли засвечивание больших порций компомеров, обоснуйте ответ приведите примеры использования больших объемов материала.

Список тем по УИРС:

- 1. Систематизация светоотверждаемых композиционных пломбировочных материалов.
- 2. Принципы применения компомеров, ормокеров.
- 3. Значение дентинных адгезивов при реставрации зубов композитами.
- 4. Реставрация зубов и современные пломбировочные материалы.

Тема занятия №14: *АДГЕЗИВНЫЕ СИСТЕМЫ. КЛАССИФИКАЦИЯ, СОСТАВ, СВОЙСТВА, ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ.*

Значение изучения темы: существование обширного рынка адгезивных систем, современных композиционных пломбировочных материалов, постоянное появление новых образцов, используемых в клинической практике, приводит к необходимости постоянного обновления информации и оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе и свойствах адгезивных систем, композиционных пломбировочных материалов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых композиционных пломбировочных материалов и проводить их назначение в зависимости от цели и задач лечебных мероприятий.

Для этого необходимо:

- знать состав и свойства адгезивных систем;
- знать методику применения дентинных адгезивов различных систем;
- уметь правильно наносить адгезивы на ткани зуба фантома;
- уметь работать на фантомах с композиционными пломбировочными материалами светового отверждения;
- уметь подобрать по составу наиболее эффективные композиционные пломбировочные материалы в зависимости от клинической ситуации;
- иметь представление о новых разработках постоянно развивающихся полимерных пломбировочных материалов.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- ознакомление с аннотациями адгезивных систем, композиционных пломбировочных материалов;

- замешивание композиционных пломбировочных материалов химического отверждения;
- работа на фантомах с адгезивными системами, светоотверждаемыми композиционными пломбировочными материалами;
 - решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Адгезивные системы

Адгезивные системы применяются для формирования устойчивой связи между композиционным пломбировочным материалом и тканями зуба. Главная цель их применения - блокировка высоких деформирующих сил, возникающих при полимеризации композитов и обеспечение надежного сцепления между зубом и материалом. Адгезивы могут нести и другие функции: зашита пульпы от воздействия компонентов пломбировочного материала, предупреждение развития вторичного кариеса, торможение развития микрофлоры. Основной принцип сцепления современных дентинных адгезивов основан главным образом на микромеханическом проникновении адгезивной системы

в деминерализованную дентинную поверхность. Дополнительно эти препараты могут обеспечивать химическое сцепление с дентином.

Микромеханическая связь основана на двух механизмах:

- проникновение в деминерализованный кислотой дентин,
- проникновение в дентинные канальцы.

Микромеханическое сцепление с дентином коренным образом отличается от связи с эмалью зуба. Дентин обладает следующими особенностями:

- высокая доля органической субстанции в составе,
- связь с пульпой через дентинные канальцы,
- неравномерное распределение различных дентинных структур,
- остаточная влажность, делающая дентин труднопроходимым для гидрофобного бонда,
- покрытие дентина «смазанным» («масляным») слоем, состоящим из остатков слюны, крови, дентинных опилок и других органических частиц.

Все это создает определенные трудности для надежного сцепления адгезивных систем и материалов с дентином.

При развитии дентинных адгезивных систем было разработано несколько их видов, которые обозначаются как поколения, и отличаются между собой механизмами прикрепления к дентину и силой связывания.

Первое поколение характеризовалось использованием ионных и хеляционных связей с неорганическими компонентами дентина, в первую очередь с кальцием. В качестве активной группы применялся глицерофосфорной кислоты диметакрилат. Сила сцепления была небольшой (2-5 МПа) и значительно уменьшалась при наличии влаги, выделявшейся из дентинных канальцев.

Сила сцепления адгезивов второго поколения была в три раза больше. В качестве активных групп использовались хлор-замещенные фосфатные эфиры различных мономеров. Основным механизмом соединения было ионное связывание кальция дентина хлорфосфатными группами.

В адгезивах *темьего поколения* использовали «смазанный» слой, через который и осуществлялось прикрепление. Они обеспечивали силу сцепления до 15 - 18 МПа. В качестве активных групп обычно использовались алюмосиликаты, алюмо-нитраты, 4-МЕТА, НЕМА.

Адгезивные системы *четвёртого поколения* глубоко проникают в толщу дентина и образуют в нём гибридную зону. Они, как правило, содержат PENTA, дипентаэритролапен такрилата эфир фосфорной кислоты вещество, содержащее активные гидрофобные и гидрофильные группы. Это позволяет ему активно соединяться как с ионами кальция, так и с активными группами коллагена основного вещества дентина. Сила прикрепления данных систем к дентину до 25 - 27 МПа.

При применении адгезивной системы четвёртого и пятого поколений «смазанный» слой растворяется кислотой, широко открывая устья дентинных канальцев, последние приобретают воронкообразную форму, облегчающую проникновение адгезива в дентин.

Адгезивы четвёртого поколения состоят из двух жидкостей: праймера и адгезива (бонда). За счёт глубокого проникновения праймера в дентинные канальцы возникает особый вид прочной механической связи композита с дентином. Одним из важных механизмов этой связи является соединение смол праймера и волокон коллагена на поверхности дентина. После такой обработки образуется гибридный слой, то есть та часть дентина, куда проникла смола праймера. На гибридный слой наносится собственно адгезив.

Таким образом, после полимеризации адгезивной системы в толще дентина образуется гибридная зона, а на его поверхности - тонкая пленка затвердевшего адгезива. Дентинные канальцы прочно запечатаны адгезивной системой, что исключает проникновение свободного мономера из композита в пульпу и ее раздражение, что позволяет исключить применение изолирующих прокладок. Адгезивы четвертого поколения: «Pro Bond», «Scotchbond», «Syntac», «OptiBond»

Адгезивные системы пятого поколения по химическому составу практически идентичны адгезивам четвертого поколения, но благодаря созданию новых систем стабилизации праймер и адгезив находятся в «одном флаконе». Клиническое применение их отличается только тем, что жидкость наносится дважды: первая порция выполняет функцию прай-мера, вторая - адгезива. Адгезивы пятого поколения: «Prime & Bond 2.0», «Prime & Bond 2.1», «Single Bond», «Optibond Solo», «Solobond M», «Gluma comfort Bond».

Совершенно новым этапом развития адгезивных технологий явилось создание самокондиционирующихся систем, не требующих предварительного протравливания тканей зуба («Prompt L-Pop», «Gluma One Bond»). В этих системах все три компонента - протравливающий гель, праймер, бонд - сочетаются в одном составе.

Методика применения современной адгезивной систем

После препарирования кариозной полости проводиться тотальное протравливание тканей зуба - протравливающий гель наносится на дентин (10 - 20

сек) и эмаль (20 - 30 сек).

Полость тщательно промывается водой и высушивается воздухом. Важно не пересушивать дентин, он должен оставаться влажным.

На поверхность дентина наносится праймер или первый слой адгезива пятого поколения, его следует выдержать на поверхности дентина в течение 20 - 30 секунд. Целесообразно раздувать адгезив слабой струей воздуха для предупреждения образования толстого адгезивного слоя.

Следующим этапом наносится слой собственно адгезива (бонда) или второй слой адгезива пятого поколения, выдерживается на поверхности дентина 20 сек. Фотополимеризация адгезивной системы проводится в течение 40 секунд.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Гибридная зона это:
- а) зона, которая исключает подтекание дентинной жидкости, образуется при проникновении праймера в пространства дентина, между коллагеновыми волокнами
- б) зона, которая образуется в результате препарирования полости, содержит обломки дентинных трубочек, клетки микрофлоры полости рта, слущенные эпителиоциты
- 2) Какие из перечисленных пломбировочных материалов относятся к группе материалов для постоянных пломб:
 - а) силидонт
 - б) эвикрол
 - в) кальмецин
 - г) Valux plus
 - д) Dycal
 - е) цинкоксидэвгенольный цемент
- 3) Блестящий, «влажный», легко снимающийся инструментом слой на поверхности композита называется:
 - а) смазанный слой
 - б) слой, ингибированный кислородом
 - в) гибридный слой
- 4) Перечислите наиболее распространенные ошибки при использовании композиционных материалов:
- а) применение микронаполненных композитов для восстановления поверхностей 1,2 классов, режущих краев фронтальных зубов
- б) попадание на склеиваемую поверхность ротовой или десневой жидкости
 - в) игнорирование правил направления лучей полимеризационной лампы
 - г) неполноценная пластическая обработка наносимого слоя композита
 - д) все верно
- 5) Слой, ингибированный кислородом:
- а) со временем нарушается и окрашивается пигментами пищи, если его не удалить с помощью финишной обработки
 - б) создает условия для качественного соединения вносимой порции ком-

позита с ранее полимеризованной поверхностью

- в) реакция полимеризации в этом слое невозможна
- г) все верно
- б) Поверхность дентина обрабатывают дентинным адгезивом с целью:
 - а) предупреждения инфицирования и интоксикации пульпы зуба
 - б) улучшения связывания дентина и композита
 - в) сокращения времени работы за счет отсутствия прокладок
 - г) все верно
- 7) Назовите типы адгезивов:
 - а) эмалевый
 - б) дентинный
 - в) универсальный
 - г) смешанный
- 8) Для уменьшения объемной усадки при работе с фотокомпозитом проводят:
 - а) отверждение материала слоями толщиной не более 2мм
 - б) порционное отверждение материала сквозь твердые ткани зуба
 - в) все верно
- 9) При использовании адгезивных систем 5 поколения проводится:
 - а) только протравливание дентина
 - б) тотальное протравливание
 - в) только протравливание эмали
- 10) Перечислите функции адгезивных систем:
 - а) формирование устойчивой связи между КПМ и тканями зуба
- б) блокировка высоких деформирующих сил, возникающих при полимеризации композитов и обеспечение надежного сцепления между зубом и материалом
 - в) защита пульпы от воздействия компонентов пломбировочного материала
- г) предупреждение развития вторичного кариеса, торможение развития микрофлоры
 - д) все верно
- 11) Применение адгезивной системы 4, 5 поколений способствует образованию:
 - а) гибридной зоны
 - б) смазанного слоя
- 12) Самокондиционирующие системы:
 - а) не требуют предварительного протравливания тканей зуба
 - б) протравливающий гель, праймер, бонд сочетаются в одном составе
 - в) все верно
- 13) Адгезивные системы 5 поколения содержат праймер и адгезив:
 - а) в виде двух жидкостей
 - б) адгезивные системы 5 поколения не содержат праймер
 - в) в «одном» флаконе

- 14) Световая полимеризация адгезивной системы после нанесения адгезива проводится:
 - а) 10 секунд
 - б) 20-40 секунд
 - в) 60 секунд
- 15) После обработки праймером поверхность дентина должна выглядеть:
 - а) слегка увлажненной без избытка на ней жидкости
 - б) матовой, с меловым оттенком
- 16) При использовании адгезивной системы 5 поколения роль праймера выполняет:
 - а) первая порция жидкости адгезивной системы
 - б) вторая порция жидкости адгезивной системы
 - в) адгезивная система 5 поколения не содержит праймер
- 17) При применении адгезивной системы 4 и 5 поколений «смазанный» слой:
- а) служит для прикрепления пломбировочного материала к твердым тканям зуба
- б) растворяется кислотой, широко открывая устья дентинных канальцев, облегчая проникновение адгезива в дентин
- 18) Тотальное протравливание рекомендуется применять при последующем использовании адгезивных систем:
 - а) 3 поколения
 - б) 4-5 поколений
 - в) 1 поколения
 - г) 2 поколения
- 19) Праймер выдерживается на поверхности дентина в течение:
 - а) 20-30 секунд
 - б) 10 секунд
 - в) 40 секунд

Залачи.

- 1. Возможно ли применение одного светоотверждаемого материала с различными адгезивными системами (например IV, V поколений), обоснуйте ответ.
- 2. При отсутствии травящих агентов и невозможности удаления смазанного слоя какие адгезивные системы возможно использовать при работе со свето-отверждаемыми материалами
- 3. При работе со светоотвержлаемым материалом врач нанес травящий гель на всю поверхность полости одномоментно на 10 сек.,после смывания было проведено высушивание полости воздушным пистолетом около 10 сек. после окончания работы спустя некоторое время пломба выпала, объясните причины и объясните правильную методику работы

Список тем по УИРС:

- 1. Систематизация адгезивных систем и принципы их применения.
- 2. Значение дентинных адгезивов при реставрации зубов композитами.
- 3. Реставрация зубов и современные пломбировочные материалы.

Тема занятия №15: *МЕТАЛЛИЧЕСКИЕ ПЛОМБИРОВОЧНЫЕ МАТЕРИАЛЫ. СОСТАВ, СВОЙСТВА, ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ.*

Значение изучения темы: существование обширного рынка современных пломбировочных материалов, постоянное появление новых образцов и групп, а также совершенствование представлений о материалах, используемых в клинической практике, приводит к необходимости постоянного обновления информации и оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе и свойствах амальгам, проводить пломбирование на фантомах в зависимости от цели и задач лечебных мероприятий. Для этого необходимо:

- знать состав и свойства амальгам; показания и противопоказания к применению амальгамы;
- знать технику безопасности при работе с амальгамой;
- уметь замешать амальгаму в амальгамосмесители;
- иметь навыки наложения пломбы из амальгамы на фантоме;
- иметь представление о новых компонентах, вводимых в состав амальгам.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- ознакомление с аннотациями амальгам от различных производителей;
- смешивание амальгам в амальгамосмесителе;
- наложение пломб из амальгам на фантомах;
- решение ситуационных задач.
- 3. Подведение итогов:
- -тестовый контроль.

Основные понятия и положения темы:

Всегда было понятно, что одной из наиболее слабых сторон при пломбировании является опасность возникновения нарушений краевого прилегания, когда развитие вторичного кариеса будет лишь вопросом времени. Амальгама просто покрывает это пространство коррозией и это одно из основных преимуществ этого материала. Однако сегодня амальгама - не самый востребованный материал для использования в полости рта и, конечно же, было бы только приятно отказаться от этого материала совсем. Чтобы добиться успеха, необходимо научиться препарировать кариозные полости специально под новые материалы, которые, несмотря на то, что, не являются столь же прочными как амальгама, будут столь же эффективны и надежны при лечении кариеса.

Амальгамы

Амальгама - сплав металлов с ртутью является наиболее прочным пломбировочным материалом, который применяется в зубоврачевании со времен правления в Китае династии Танг (618 - 907 г. нашей эры.). За этот период состав амальгамы претерпел многие изменения.

Различают *простые амальгамы* (состоят из двух компонентов, например меди и ртути) и сложные (состоят из трех и более компонентов: ртути, меди, серебра, олова, цинка и др.). В настоящее время почти во всех странах применяют сереб-

ряная амальгама, опилки которой содержат 66% серебра, 32% олова, 2% меди. Серебро придает амальгаме твердость, олово замедляет процесс твердения, медь повышает прочность и обеспечивает хорошее прилегание пломбы к краям полости.

Достоинствами серебряной амальгамы являются твердость, пластичность, свойство не изменять цвет зуба, не разрушаться и не изменяться в секрете полости рта и при соприкосновении со слизистой оболочкой десны. Недостатками амальгамы являются плохая прилипаемость, высокая теплопроводность, изменение объема (усадка), способность амальгировать искусственные коронки и протезы из золота и наличие ртути в ее составе, которая при определенных концентрациях в организме способна оказывать токсическое действие.

Установлено, что в проблеме интоксикации ртутью при пломбировании зубов следует различать два аспекта: попадание ртути в организм пациента из пломбы и возможность интоксикации персонала стоматологических кабинетов парами ртути в процессе приготовления амальгамы.

Считается бесспорным, что ртуть из амальгамы поступает в ротовую жидкость, а затем в организм. Однако количество, поступающее в организм из пломб (даже при 7-10 пломбах), не превышает предельно допустимые нормы. Возможность интоксикации сотрудников стоматологических кабинетов имеется. Однако при соблюдении требований по условиям приготовления амальгам, как сейчас установлено многочисленными исследованиями, содержание паров ртути в стоматологических кабинетах не превышает допустимых нормативов.

Отечественная промышленность выпускает в капсулах серебряную амальгаму ССТ - 43, которая по своим качествам не уступает зарубежным.

Серебряная амальгама применяется для пломбирования полостей I, II и V классов с обязательным наложением прокладки из фосфат - цемента (лучше иономерного цемента). Обязательным условием является наложение изолирующей прокладки до дентино-эмалевого соединения. В настоящее время вместо прокладки используются бондинговые системы. Достоинством их является надежное закрытие дентинных канальцев. Кроме того, бондинговые системы создают благоприятные условия для адгезии амальгамы с краем зуба и тем самым уменьшают возможность возникновения краевой проницаемости.

В настоящее время существуют различные типы дозирующих устройств, обеспечивающие необходимые соотношения порошка сплава и ртути. Наиболее распространенным способом является объемное дозирование компонентов. В последнее время широко применяется амальгамосмеситель, который представляет собой электрический вибратор с большим числом колебаний в минуту. Ампулу, содержащую в нужном соотношении порошок и ртуть, зажимают в держателе и включают устройство на 15 - 20с. Под действием вибрации порошок хорошо смешивается с ртутью. Отжимание амальгамы не проводится, так как порошок и ртуть берут в нужном соотношении.

Наиболее оптимальной формой расфасовки амальгамы являются ампулы, в которых содержится порция порошка и ртути. После соединения, что достигается при надавливании на ампулу производят их смешивание в амальгамосмесители в течение 15 - 20 с.

Время отвердения (схватывания) серебряной амальгамы -не более 30 минут. Окончательная кристаллизация сплава наступает через 24 часа.

В настоящее время создаются новые сорта амальгамы, с повышенным содержанием меди, свободные от перечисленных выше недостатков.

- *амадент* комплект одноразовых доз ртути и мелкозернистого серебряного сплава в капсулах для приготовления серебряной амальгамы. Предназначен для пломбирования полостей I и II классов. Методика пломбирования амадентом такая же, что и серебряной амальгамой.
- медная амальгама простейшая медная амальгама состоит из 30% меди и 70% ртути. В настоящее время к выпускаемой медной амальгаме добавляют олово примерно 1,5-2%, уменьшая соответственно содержание ртути, что улучшает физико-химические свойства амальгамы: повышаются механическая прочность, химическая стойкость к коррозии, стабилизируется цвет амальгамы и уменьшается окрашивание твердых тканей зуба, прилежащих к пломбе. Медная амальгама выпускается в виде брикетов стандартных плиток. Методика пломбирования зубов медной амальгамой такая же, как и серебряной.
- *медная амальгама капсулированная*. Процесс ее приготовления аналогичен серебряной амальгамы.

Недостатки медной амальгамы: растворение меди в молочной кислоте ротовой жидкости ведет к коррозии ее поверхности. Сульфиды и ацетаты меди, образующиеся на поверхности пломб из медной амальгамы, окрашивают пломбу и зуб в темный цвет.

- *Contour* (Kerr) смешанная нон-гамма II амальгама. 70%сферических частиц, 30% опилки из них: 41% серебро, 31%олово, 28% медь. Полное исключение коррозийной гаммы ІІфазы, главной причины отломов края. Высокая и ранняя компрессионная прочность уменьшает риск переломов. Размер частиц от 44 мк и ниже обеспечивает однородность смеси. Выпускается в капсулах и порошке, стандартного и быстрого затвердения.
- *Тутіп* (Кетг) сферическая нон-гамма II амальгама. 100%сферические частицы, из них: 60% серебро, 26% олово, 14%медь. Высокая статистическая прочность обеспечивает долгосрочную стабильность краев. Ранняя и высокая прочность давления идеальна для постройки культи и для лечения детей. Постоянный и превосходный блеск поверхности. Удаление матрицы и моделировка сразу после конденсации. Нержавеющий материал. Выпускается в капсулах и порошке, нормального и медленного затвердения.
- Septalloy Non Gamma 2 NG 50 и NG 70 (Septodont) этиновые формулы, в форме сферических частиц и опилок имеют высокое содержание меди. Изготовленные с ртутью, сплавы Септаллой Нон Гамма 2 НГ 50 и НГ 70 позволяют получить гибкий и гомогенный материал. Как и большинство сплавов этого типа обладают повышенной устойчивостью к коррозии, а также не дают усадку.

Свойства амальгамы

1. Самый прочный из имеющихся пломбировочных материалов, прочность через 24 часа достигает 400 МПа (прочность зависит от соотношения твёрдых и жидких компонентов; содержания серебра в сплаве).

2. При твердении в первые 10-15 минут происходит незначительная усадка материала, а затем идёт процесс расширения массы до 0,2% объема, что способствует лучшей механической адгезии материала к тканям зуба.

Наряду с хорошими физико-химическими характеристиками амальгама имеет ряд недостатков:

- высокая теплопроводность,
- возникновение контактной разности потенциалов в полости рта (гальванизм),
- коррозия и потемнение пломбы со временем,
- амальгамирование золота,
- -несоответствие цвету тканей зуба,
- -дороговизна производства (в 30 раз дороже цементов).

В настоящее время применяются следующие отечественные амальгамы: серебряная амальгама ССТА-01, амальгама без гамма-2 фазы ССТА-43, медная амальгама СМТА-56.

Зарубежные амальгамы: Amalcap plus поп (, Vaviloy HR, Amalgam GK alloy, Contour (Kerr), Tytin (Kerr).

Состав амальгамы в % (сравнительная таблиц	Состав	в амальгамы	B %	(сравнительная	таблииа	:)
--	--------	-------------	-----	----------------	---------	----

	серебро	олово	медь	ртуть
CCTA-1	68,5	28	3,5	
CCTA-43	43	30	27	
CCTA-56	2	2	56	40
Amalcap plus	70,1	18	11,9	
Vaviloy HR	46,5	30	23,5	

Наибольшее распространение получил механический способ смешивания амальгамы с помощью амальгамосмесителей. Полиэтиленовая капсула заполняется сплавом и ртутью и помещается в амальгамосмеситель на 30 - 40 секунд. Ряд отечественных и зарубежных амальгам поставляются уже дозированными в двухкамерных полиэтиленовых капсулах. Перед перемешиванием необходимо совместить камеры капсулы, чтобы произошло смешивание ртути и сплава, и поместить капсулу в амальгамосмеситель.

Пломбирование амальгамой складывается из следующих этапов:

- внесение амальгамы в полость производится мелкими порциями,
- конденсация амальгама тщательно притирается к стенкам и дну полости с удалением избытка ртути,
- моделирование пластичной амальгамы заключается в создании окончательной поверхности пломбы, удалении избытка материала с поверхности зуба, формировании анатомических образований,
- шлифовка и полировка проводится не ранее чем через24 часа.

Приготовление амальгам. Существует ручной и механический способ приготовления амальгамы. При ручном способе сплав и ртуть, взятые в определённой пропорции (1/4) помещают в ступку и растирают до получения пластичной гомогенной массы.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1)Работа с амальгамой требует соблюдения строгих санитарно-гигиенических норм:
 - а) да
 - б) нет
- 2) Пломбы из амальгамы могут вызывать аллергическую реакцию или хроническую интоксикацию организма:
 - а) чрезвычайно редко
 - б) часто
- 3) Химическая реакция между серебром и ртутью называется:
 - а) амальгамированием
 - б) растворением
 - в) полимеризацией
 - г) окислением
- 4) Способы приготовления серебряной амальгамы:
 - а) растирать пестиком в ступке
 - б) смешивать в амальгамосмесителе
 - в) смешивание на стеклянной пластинке металлическим шпателем
 - г) смешивание на блокноте пластмассовым шпателем
- 5) Серебряную амальгаму применяют в полостях:
 - а) І класс
 - б) ІІ класс
 - в) III класс
 - г) IV класс
- 6) Избыток ртути в амальгаме приводит к:
 - а) расширению материала в процессе амальгамирования
 - б) повышенному содержанию гамма-2 фазы
 - в) повышенной прочности пломбы
 - г) растрескиванию пломбы
 - д) повышенной коррозии материала
 - е) усадке пломбы в процессе эксплуатации
- 7) Добавка меди (до 5%) к серебряной амальгаме приводит к:
 - а) расширению амальгамы
 - б) увеличению прочности и твёрдости
 - в) снижению текучести
 - г) все верно
- 8) Укажите достоинства амальгамы:
 - а) высокая теплопроводность
 - б) высокая прочность
 - в) гальванизм
 - г) коррозия и потемнение пломбы со временем
 - д) пластичность

- 9) Влияет ли степень конденсации амальгамы на объёмные изменения амальгамы:
 - а) да
 - б) нет
- 10) При пломбировании амальгамой наложение изолирующей прокладки:
 - а) обязательно
 - б) желательно
 - в) не нужно
- 11) Способы приготовления амальгамы:
 - а) ручной
 - б) комбинированный
 - в) механизированный
- 12) Серебряная амальгама по составу это:
 - а) сплав медь-олово и галлий-олово
 - б) сплав олово-ртуть
 - в) сплав медь-ртуть
- 13) Время смешивания амальгамы при ручном способе приготовления составляет:
 - а) 20 секунд
 - б) 30 секунд
 - в) 40-60 секунд
- 14) Шлифовка и полировка амальгамы проводится не ранее, чем через:
 - а) 48 часов
 - б) 24 часа
 - в) 15 минут
- 15) Какие участки кариозной полости протравливают при применении композитов второго поколения?
 - а) эмалевый край
 - б) дентин стенок полости
 - в) эмалевый край и дентин выше прокладки
 - г) дентин дна полости
- 16) Жидкость адгезивных ситем 5 поколения наносится:
 - а) дважды
 - б) однократно

Задачи.

- 1. В стоматологическую поликлинику обратился пациент, возраст 48 лет. Жалобы на кратковременные боли от сладкого в 15 зубе, при осмотре были выявлены кариесогенные порожения твердых тканей средней глубины, у пациента также имеются непрямые реставрации некоторых жевательных зубов из сплавов золота. Возможно ли применение амальгамы для пломбирования в данных условиях. Обоснуйте ответ
- 2. У пациента имеются пломбы из амальгамы выполненные около 15 лет назад визуально поверхность пломбы темная матовая, окружающие ткани зуба имеют некоторое потемнение цвета, объясните возможные причины данного явления.

3. После пломбирования амальгамой через день пациент стал жаловаться на боли от температурных раздражителей, объясните возможные причины и ошибки

Список тем по УИРС:

- 1. Преимущества пломбирования кариозных полостей амальгамой.
- 2. Отрицательные свойства амальгамы.

Тема занятия №16: *МАТЕРИАЛЫ ДЛЯ ЛЕЧЕБНЫХ ПРОКЛАДОК. КЛАССИФИКАЦИЯ, СОСТАВ, СВОЙСТВА, ТЕХНИКА ПРИМЕНЕНИЯ.*

Значение изучения темы: широкий выбор современных пломбировочных материалов для прокладок, а также совершенствование представлений о материалах, используемых в клинической практике, приводит к необходимости постоянного обновления информации и оптимизации технологий пломбирования зубов.

Цели занятия: на основе знаний о составе и свойствах лечебных и изолирующих прокладочных материалов, научиться проводить их систематизацию, определять положение в систематизации вновь разрабатываемых прокладочных материалов и проводить их назначение в зависимости от цели и задач лечебных мероприятий.

Для этого необходимо:

- знать состав и свойства лечебных и изолирующих прокладочных материалов;
- уметь подобрать по составу наиболее эффективные лечебные и изолирующие прокладочные материалы в зависимости от клинической ситуации;
- иметь навыки наложения лечебных, изолирующих прокладок на фантоме;
- иметь представление о новых компонентах, вводимых в состав лечебных и изолирующих прокладочных материалов.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- -ознакомление с аннотациями лечебных и изолирующих прокладочных материалов;
- замешивание лечебных и изолирующих прокладочных материалов;
- наложение лечебных и изолирующих прокладок на фантомах;
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Различают лечебные и изолирующие прокладки.

Лечебные прокладки

Материалы для лекарственных (лечебных) прокладок под постоянные пломбы при лечении кариеса зуба должны оказывать противовоспалительное и обезболивающее действие, а также стимулировать репаративные процессы в пульпе (образование заместительного дентина). В наибольшей степени этим требованиям отвечают препараты, содержащие гидроокись кальция Ca(OH), оказывающей длительное и интенсивное антимикробное действие. В результате снижения рH, за счет выраженной щелочной реакции препарата, происходит нормализация кровоснабжения пульпы.

Кроме того, происходит интенсивное отложение заместительного дентина. Научные исследования показали, что не все проблемы с лечебными прокладками решены. Так, разрушение гидроокиси кальция, наносимой на дно кариозной полости, возможно в случаях кислотного «загрязнения» дентина, при недостаточном смыве протравочного геля струей воды. Использование лечебных прокладок в маленьких и мелких кариозных полостях в целях предупреждения инфицирования и вторичного кариеса может ослабить как ретенцию, так и прочность пломбы. Материал с высоким содержанием гидроокиси кальция может растворяться при появлении краевой проницаемости. Лечебная прокладка может разрушаться дентинной жидкостью, поступающей через подлежащие дентинные трубочки, поскольку постоянный ток ликвора может способствовать диффузии

Лечебная прокладка способствует предохранению пульпы от вредных воздействий, в первую очередь токсинов микроорганизмов, а также стимулирует регенераторные процессы в пульпе зуба

По способу наложения лечебные прокладки делятся:

составных частей пасты по градиенту концентраций.

- для прямого наложения на вскрытую полость зуба, то есть на обнажённую пульпу, при лечении травматического пульпита,
- для непрямого наложения заключается в наложении прокладки на тонкий слой дентина дна кариозной полости при лечении глубокого кариеса. *По форме выпуска:*
- готовые официальные препараты, приготовленные в промышленных условиях.
- приготовленные перед применением готовятся врачом непосредственно перед пломбированием по одной из рецептур.

По времени твердения:

- нетвердеющие пасты не меняющие своего агрегатного состояния, готовятся на облепиховом, камфорном, абрикосовом маслах, витамине A и глицерине.
- быстротвердеющие препараты, твердеющие 2-3 минут после внесения в кариозную полость.
- долго твердеющие препараты твердеющие в течении нескольких часов под повязкой или слоем постоянного пломбировочного материала.

По механизму твердения:

- химического твердение происходит после смешивания основной и каталитический паст или ингредиентов данной рецептуры,
- светового твердение происходит после освечивания галогеновым светом.

По составу основы:

- полимерная («Кальцимол», «Кальципульп», «Лайф», «Кавалайт», «Кальцисил»).

- водная («Кальцикур»).
- масляная («Кальцин», «Цинк-эвгенольная паста», «Лизоцим витаминная»).
- мономерная («Кальмицин», «Пульпомиксин», «Кальцедонт»).

По действующему компоненту:

- с соединениями кальция наиболее распространенная группа препаратов, содержащая гидрооксид кальция, оксидкальция, гидроксиапатит кальция,
- с противовоспалительными препаратами в состав паст входят стероидные (гидрокартизон, дексаметазон) и нестероидные (индометацин, гепарин, бутадион) препараты,
- с анти-микробными препаратами в состав входят антибиотики, сульфаниламидные препараты, антисептики,
- с ферментами в состав входят трипсин, химотрипсини др.

В нашей стране выпускаются: Кальцевит – кальций, содержащий прокладочный материал типа «паста», Кальцесил -кальцийсодержащий прокладочный материал типа «паста -паста», Кальцесил LC- кальцийсодержащий светоотверждаемый прокладочный материал (Владмива). Из зарубежных препаратов широкое применение получили: Dycal Ivory (Dentsply), Life (Kerr), Calcium hydroxide cavity liner (PD), Calcipulpe, Septocalcine ultra, Septocal L.C. (светоотверждаемая прокладка) (Septodont).

Техника приготовления лечебной прокладки на полимерной основе: лечебная прокладка на полимерной основе выпускается в виде двух паст - основной и каталитической. Для приготовления материала необходимо взять их в соотношении 1/1, смешать на бумажном блокноте пластмассовым шпателем в течение 20 - 30 секунд.

Изолирующие прокладки

Известно, что почти все постоянные пломбировочные материалы способны оказывать раздражающее действие на пульпу зуба. С целью устранения неблагоприятного влияния на пульпу зуба химических и физических факторов применяют изолирующие прокладки. Изолирующие прокладки выполняют ряд функций:

- изолируют пульпу от попадания токсинов и других вредных воздействий,
- изолируют пломбировочный материал от влияния дентинной жидкости,
- -способствуют лучшей адгезии пломбы. изолирующая прокладка должна соответствовать следующим требованиям:
- не раздражать пульпу зуба (быть химически не токсичной),
- обладать механической прочностью,
- быть непроницаемой для кислот и мономеров, выделяющихся при отверждении постоянных пломб,
- иметь низкую теплопроводность,
- не изменять геометрию правильно сформированной полости,
- не выходить за пределы полости, так как прокладка легко рассасывается под воздействием ротовой жидкости,
 - -не изменять цвет зуба,
- обладать удовлетворительной адгезией,
- -иметь рентгенконтрастность,

- иметь коэффициент теплового расширения, близкий к твердым тканям зуба.

Использование изолирующих прокладок под композиционные материалы предопределяется таким фактором, как компенсацией усадки композита. Таким образом, в терапевтической стоматологии появилась технологий компенсации усадки - «сэндвич - техника». При использовании «сэндвич - техники» в качестве базового компонента часто применяют стеклоиономерные цементы. Выбор стеклоиономеров основывается на их хороших адгезивных свойствах, практически полном отсутствии токсичности и достаточной связью с композиционными материалами. Еще одним, не менее важным качеством стеклоиономерных цементов является их способность препятствовать возникновению рецидива кариеса.

В качестве изолирующих прокладок широко используют фосфатные, поликарбоксштатные и стеклоиономерные цементы. В качестве изолирующей прокладки могут быть использованы:

- Cariosan (Spofa Dental) стоматологический цемент на основе цинкоксида и эвгенола,
- Adgesor (Spofa Dental) цинкфосфатный цемент,
- Бейзлайн (Стомадент) стеклоиономерный цемент для использования в качестве прокладки при пломбировании композитными материалами и амальгамой,
- Fuji IX GP показан в качестве прокладки в зонах высоких нагрузок под другие виды пломбировочных материалов(композиты, амальгаму),
 - Fuji II LC Improved светоотверждаемый стеклоиономерный материал многоцелевого назначения. Может использоваться в качестве прокладки под другие виды пломбировочных материалов (композиты, амальгаму),
 - Vitrebond LC (3 M) светоотверждаемый стеклоиономерный прокладочный материал под композиты, амальгамуи др. Благодаря своей гибкости Витребонд уменьшает полимеризационную усадку композитных материалов. Прокладочный материал 3M Vitrebond не рекомендуется использовать как материал для постоянного пломбирования. Материалимеет низкое соотношение порошок жидкость, жидкая смесь очень удобна для нанесения прокладки, но не пломбирования. Так как полимеризация происходит только при световомотвердевании, пломбирование следует производить послойно, таким образом, чтобы наиболее полно использовать преимущества эффекта полимеризации,
 - Baseliner (Dentstar) светоотверждаемый компомерный прокладочный материал применяется для покрытия полости зуба с целью образования связующей базы при реставрации зубов композитными материалами,
 - Cavalite (Kerr) светоотверждаемый прокладочный материал, применяется в качестве прокладки для покрытия полости зуба, а также как базисный материал, который содержит как гидроксиапатит, так и стеклоиономерный порошок, пигментированный натуральным цветом дентина,
 - Ionosit Baseliner (DMG) светоотверждаемый прокладочный материал на основе компомерной технологии.

Задания на уяснение темы занятия, методики вида деятельности: Тестовые задания.

- 1) Изолирующие лаки это тонкослойные прокладки, предназначенные для защиты пульпы зуба от токсичного воздействия пломбировочных материалов, иначе их называют:
 - а) праймеры
 - б) силаны
 - в) компомеры
 - г) герметики
 - д) лайнеры
- 2) Дентин обладает следующими особенностями:
 - а) высокая доля органической субстанции в составе
 - б) связь с пульпой через дентинные канальцы
 - в) неравномерное распределение различных дентинных структур
- г) остаточная влажность, делающая дентин труднопроходимым для гидрофобного бонда
- д) покрытие дентина «смазанным» слоем, состоящим из остатков слюны, крови, дентинных опилок и других органических частиц
 - е) все верно
- 3) Какие из перечисленных пломбировочных материалов относятся к группе материалов для лечебных прокладок:
 - а) кальмецин
 - б) цинк-сульфатный цемент
 - в) life
 - г) calcipulpe
- 4) Белые полосы на поверхности и в глубине реставрации после полировки свидетельствуют:
 - а) о неправильно проведенной полимеризации
 - б) о неправильном подборе цветовых оттенков пломбировочного материала
 - в) об отрыве одного слоя композита от другого
- 5) Какие из перечисленных пломбировочных материалов относятся к группе изолирующих прокладок:
 - а) кальмецин
 - б) cavalite
 - в) фосфат- цемент
 - г) Base Line
 - д) лайф
- 6) О наличии поверхностного слоя, ингибированного кислородом свидетельствует:
 - а) отделение порции композита от склеиваемой поверхности
- б) деформация порции композита при ее отделении от склеиваемой поверхности
 - в) невозможность отделить порцию композита от склеиваемой поверхности
- 7) Лечебную прокладку применяют с целью:
 - а) реминерализации дентина

- б) стимуляции защитных механизмов пульпы
- в) разобщения околопульпарного дентина и пломбировочного материала
- г) повышения механической устойчивости околопульпарного дентина
- 8) Прокладочные материалы системы паста-паста перед применением смешиваются в соотношении:
 - a) 1:1
 - б) 1:2
 - в) 2:1
- 9) Может ли цинк-эвгенольный цемент применяться как лечебная прокладка?
 - а) да
 - б) нет
- 10) Лечебная прокладка накладывается:
 - а) точечно в область проекции рога пульпы
 - б) на дно и стенки кариозной полости, повторяя контуры полости
 - в) на дно полости до эмалево-дентинной границы
 - г) на стенки кариозной полости
- 11) Какие лечебные прокладки применяются для прямого покрытия пульпы:
 - а) кальмецин
 - б) альцимол
 - в) кальцикур
 - г) кальципульп
 - д) септокальцин
- 12) Требования, предъявляемые к лечебным прокладкам:
 - а) должны оказывать противовоспалительное, обезболивающее действие
 - б) должны стимулировать репаративные процессы в пульпе
- в) должны изолировать пульпу от попадания токсинов и других вредных воздействий
- г) должны изолировать пломбировочный материал от влияния дентинной жилкости
- 13) В качестве изолирующих прокладок наиболее часто используются следующие цементы:
 - а) фосфатные
 - б) силикатные
 - в) силикофосфатные
 - г) поликарбоксилатные
 - д) стеклоиономерные
- 14) По способу наложения лечебные прокладки делятся:
 - а) для прямого наложения
 - б) для непрямого наложения
 - в) для полного наложения
 - г) для частичного наложения
- 15) К представителям лечебных прокладок относятся:
 - а) Кальцимол
 - б) Лайф
 - в) Кальципульп

- г) Кавалайт
- д) Бейзлайн

Задачи.

- 1. При препарировании полости при глубоком кариесе оставлен тонкий слой дентина недостаточно плотного через который визуально наблюдается рог коронковой части пульпы зуба, какие материалы и методы возможно применить для сохранения витальности зуба и образования плотного заместительного слоя дентина.
- 2. Выберите материалы для прокладок при пломбировании композитами химического отверждения и амальгамой, обоснуйте выбор исходя из свойств материала.
- 3. Какие материалы для прокладок целесообразнее использовать при пломбировании полостей светоотверждаемыми композитами.

Список тем по УИРС:

- 1. Принципы применения лечебных прокладочных материалов.
- 2. Принципы применения изолирующих прокладочных материалов.
- 3. Преимущества светоотверждаемых прокладочных компомерных материалов при реставрации зубов композитами.

Тема № 17: ИНСТРУМЕНТЫ ДЛЯ ОБРАБОТКИ ПЛОМБ И РЕСТАВРАЦИЙ

Значение изучения темы: этап окончательной обработки пломбы - один из ответственных моментов для достижения эстетического результата и долговременного срока службы пломбы или реставрации, на котором нужно добиться точного соответствия по форме, размерам и блеску с соседними зубами, и придать реставрации вид, близкий к собственным тканям зуба.

Цели занятия:

На основе знаний свойств различных групп пломбировочных материалов, овладеть навыками по окончательной обработки пломб и реставраций твердых тканей зубов.

Для этого необходимо:

- -знать инструментарий для окончательной обработки пломб;
- -уметь подобрать инструментарий для шлифования и полирования пломбы;
- -иметь навыки работы с вращающимися стоматологическими инструментами.
- -иметь представление о наборах для окончательной обработки пломб различных производителей стоматологического оборудования и материалов

План изучения темы:

- 1. Исходный контроль знаний (собеседование, тесты).
- 2. Самостоятельная работа:
- работа со стоматологическими инструментами для обработки пломб и

пломбировочными материалами на фантоме

- заслушивание рефератов
- 3. Итоговый контроль знаний:
- решение ситуационных задач
- подведение итогов

Основные понятия и положения темы:

Инструменты для обработки пломб:

- 1. фрезы
- 2. финиры
- 3. карборундовые камни
- 4. диски
- 5. полиры
- 6. головки, чашечки, щеточки
- 7. финирующие и полирующие полоски (штрипсы)
- 8. полировочные пасты

1. Фрезы

Фрезы имеют крупную цилиндрическую с закругленной вершиной рабочую часть с продольными гранями. Применяются для предварительной грубой обработки пломб.

2. Финиры

Финиры — боры для финишной обработки. Состоят из стержня и рабочей части с насечками. Они могут быть разными по форме и материалу изготовления. При работе борами нужно помнить, что работа в придесневой части должна осуществляться инструментами с атравматичным усеченным и/или закругленным кончиком.

Твердосплавные боры Safe-end (12 видов) фирмы SS White Burs предназначены для контурирования (придания формы) и шлифования любых заместительных материалов. Изготавливаются из карбида вольфрама. Имеют утонченное, но закругленное, безопасное окончание рабочей части. Выпускаются 10-гранные боры для предварительной обработки и 20-гранные боры для окончательной обработки. Все боры разделяются по длине рабочей поверхности от 3мм до 9мм.

При использовании инструментов, не имеющих безопасного окончания, особенно в случае, когда обрабатываемая поверхность по своей величине превышает длину рабочей части бора и не может быть перекрыта одним движением, в месте соприкосновения верхушки бора с обрабатываемой поверхностью может возникнуть ступенька. Это приведет, в свою очередь, к дополнительным манипуляциям по ее нивелированию, что может нарушить анатомическую форму реставрации. Наличие безопасного окончания способствует также корректному удалению композитного материала в придесневой и поддесневой области без травмы маргинального края десны и круговой связки зуба, но только при проведении ретракции десны.

Твердосплавные боры Kerr Have для финишной обработки реставрации и реставрации зубов. Ассортимент KerrHave представлен 12- и 30-гранными

борами шаровидной, цилиндрической (в том числе усеченной), торпедообразной, пулевидной формы разных размеров.

3. Карборундовые камни

Арканзас - камни для шлифования и полирования композитных реставраций. Выпускаются для турбинного и углового наконечников.

4. Диски

Набор дисков Soft-Lex (квадратный дискодержатель) и Soft-Lex тонкие (круглый дискодержатель) используются для пришлифовывания и частичного полирования вестибулярной и оральной поверхностей реставрации. Присущая диску гибкость позволяет ему принимать кривизну, соответствующую поверхность зуба. Система тонких дисков Soft-Lex благодаря низкопрофильному дискодержателю, тонкой конструкции диска и маленькому диаметру расширила область их применения, особенно при шлифовании интерпроксимальных поверхностей.

Использование:

- 1. Устойчиво закрепляют диск на дискодержатель (диск не должен колебаться).
- 2. Рработа низкоскоростными наконечниками (менее 35 000 об/мин).
- 3. Нарушение порядка использования дисков может снизить качество шлифования.
- 4. Движения при шлифовании должны быть постоянно однонаправленными, т.е. от десны к реставрации. Движения вперед и назад не рекомендуются.
- 5. При шлифовании прилагают небольшое усилие.
- 6. Поверхности реставрации и диска должны быть сухими, что обеспечивает более эффективное шлифование.
- 7. Необходимо избегать соприкосновения дискодержателя с композитом изза возможного изменения цвета последнего. Возможное изменение цвета композитного материала может быть устранено повторным выполнением процедуры шлифования.

5. Полиры

Полиры имеют шарообразную гладкую головку. Применяются при полировании поверхности амальгамовых пломб (металлические полиры), цементных и пластмассовых пломб (деревянные полиры).

6. Резиновые головки, чашечки, щеточки

7. Штрипсы (полировочные полоски)

С помощью штрипсов производится удаление незначительных избытков материала и полирование аппроксимальных поверхностей реставрации. В случае неплотного прилегания матрицы к пришеечной стенке возможно образование крупных избытков отвержденного композита в области межзубных промежутков. Их удаление представляет определенные трудности. Использование штрипсов, даже крупнозернистых, не рекомендуется, так как это неизбежно приводит к травмированию межзубного десневого сосочка. Для удаления таких избытков композита лучше подходят тонкие фиссурные боры.

8. Полировочные пасты

Полировочные пасты используются в сочетании с другими видами инструментов для обработки пломб (щеточки, чашечки, резиновые головки и др.)

Задания для уяснения темы занятия, методики, вида деятельности Контрольные вопросы:

- 1. Классификация инструментов для окончательной обработки пломб.
- 2. Назначение инструментов для окончательной обработки пломб каждой группы.
- 3. Инструменты для шлифования.
- 4. Инструменты для полирования пломб.
- 5. Инструменты для обработки аппроксимальных поверхностей зубов.
- 6. Полировочные пасты и наборы.
- 7. Защитные материалы для покрытия пломб.

Тестовые задания:

- 1. Инструмент для предварительной обработки реставраций:
- а) тонкодисперсный алмазный бор
- б) стальной бор
- в) резиновый полир
- г) щеточка
- д) гладилка
- 2. Инструмент для предварительной обработки реставраций:
- а) стальной бор
- б) гладилка
- в) резиновый полир
- г) щеточка
- д) карборундовый камень
- 3. Инструмент для предварительной обработки реставраций:
- а) стальной бор
- б) финир
- в) резиновый полир
- г) щеточка
- д) гладилка
- 4. Инструмент для окончательной обработки реставраций:
- а) тонкодисперсные алмазные боры
- б) финиры
- в) стальные боры
- г) щеточки
- д) крупнозернистые штрипсы
- 5. Инструмент для окончательной обработки реставраций:
- а) тонкодисперсные алмазные боры
- б) финиры
- в) резиновые полиры
- г) щеточки
- д) стальной бор
- 6. Окончательное полирование реставрации вращающимися инструментами определяет:
- а) устранение постоперативной чувствительности
- б) цветостойкость

- в) снижение полимеризационной усадки
- г) степень адгезии зубного налета
- 7. Штрипсы применяются для пришлифовывания:
- а) оральной и вестибулярной поверхностей
- б) апроксимальных поверхностей
- в) окклюзионных поверхностей
- 8. Восстановление окклюзионных отношений проводится с помощью:
- а) тонкодисперсных алмазных боров
- б) крупнодисперсных алмазных боров
- в) резиновых полиров
- г) финиров
- д) крупнозернистых полировочных полосок
- 9. Для удаления избытков материала в интерпроксимальной области применяют:
- а) крупнозернистые штрипсы
- б) тонкие фиссурные алмазные боры
- в) стальные боры
- г) диски
- 10. Для удаления избытков материала в интерпроксимальной области применяют:
- а) крупнозернистые штрипсы
- б) стальные боры
- в) тонкие твердосплавные боры
- г) диски

Ситуационные задачи:

- 1. Пациенту С. проведено восстановление дефекта на окклюзионномедиальной поверхности 25 зуба композитным материалом светового отверждения. Отмечается избыток материала в межзубном промежутке.
 - 1. Классифицировать кариозную полость по Блэку.
 - 2. Какие инструменты понадобятся для финишной обработки?
- 2. Пациенту В. светоотверждаемым композитом реставрирован дефект 44 зуба, локализованный на вестибулярной поверхности в пришеечной области.
 - 1. Классифицировать кариозную полость по Блэку.
 - 2. Перечислить инструменты для шлифования и полирования реставрации.

Список тем УИРС:

1. Инструменты для окончательной обработки реставраций.

Тема № 18: *ОСОБЕННОСТИ ОКОНЧАТЕЛЬНОЙ ОБРАБОТКИ ПЛОМБ* Значение изучения темы:

Этап окончательной обработки пломбы - один из ответственных моментов для достижения эстетического результата и долговременного срока службы пломбы или реставрации, на котором нужно добиться точного соответствия по форме, размерам и блеску с соседними зубами, и придать реставрации вид, близкий к собственным тканям зуба.

Цели занятия:

На основе знаний свойств различных групп пломбировочных материалов, овладеть навыками по окончательной обработки пломб и реставраций твердых тканей зубов.

Для этого необходимо:

- -знать свойства различных пломбировочных материалов;
- -уметь проводить шлифование и полирования пломбы;
- -иметь навыки работы с вращающимися стоматологическими инструментами.
- -иметь представление о наборах для окончательной обработки пломб различных производителей стоматологического оборудования и материалов

План изучения темы:

- 1. Исходный контроль знаний (собеседование, тесты).
- 2. Самостоятельная работа:
- работа со стоматологическими инструментами для обработки пломб м пломбировочными материалами на фантоме
- заслушивание рефератов
- 3. Итоговый контроль знаний:
- решение ситуационных задач
- подведение итогов

Основные понятия и положения темы:

Финишная обработка реставрации имеет целью удаление избытков заместительного материала, воссоздание анатомической формы зуба и полирование поверхности до блеска. Данный этап определяет цветостойкость и износоустойчивость эстетической реставрации, поскольку все материалы требуют снятия тонкого поверхностного слоя, неполимеризованного в силу взаимодействия с кислородом воздуха.

Неверный выбор стоматологических боров для шлифования и полирования реставрации может привести к появлению царапин на реставрации, избыточному удалению материала по периметру реставрации, повреждению эмали на границе с пломбировочным материалом, перегреванию тканей зуба, повреждению десневого края, быстрой изнашиваемости применяемого инструмента и пр. Следствием перечисленных осложнений возможно нарушение анатомической формы зуба, эстетических свойств и функциональной ценности реставрации.

Критерии качества проведенной финишной обработки реставрации из композитов:

- 1) соответствие реставрации анатомии восстанавливаемого зуба
- 2) наличие равномерных окклюзионных контактов на реставрации, на тканях восстановленного и рядом стоящего зуба
- 3) отсутствие тактильного перехода заместительного материала на ткани зуба
- 4) наличие сухого блеска реставрации

При обработке реставрации выделяют несколько этапов:

I этап - удаление избытков пломбировочного материала с использованием твердосплавных и алмазных мелкозернистых боров.

II этап - определение и восстановление окклюзионных отношений в положении центральной и боковой окклюзии.

Осуществляется окклюзионный и артикуляционный контроль.

Лучшим средством для этой манипуляции признаны специальные пленки для проверки окклюзии. В частности, ленты фирмы Ваиsch представлены сверхтонкой пленкой, на поверхность которой нанесен краситель в виде микрогранул. Под давлением эти гранулы разрушаются, оставляя на поверхности реставрации специфичный след, состоящий из двух зон. Центральный участок слабо окрашен за счет выдавливания красителя на периферию, где имеется яркий ободок. Область супраконтакта, подлежащая пришлифовыванию, находится в центре. При работе с композитами, как правило, требуется многократная проверка на наличие супраконтактов как при окклюзии, так и при артикуляции. При первом накусывании необходимо попросить пациента сильно не сжимать челюсти, так как это может привести к сколу композита в нежелательном месте. Противопоказано пришлифовывание с полным выведением отреставрированного зуба из межокклюзионных взаимоотношений.

Используют мелкодисперсные алмазные и твердосплавные боры.

III этап — **воссоздание анатомической формы** — состоит в формировании бугров, валиков, желобков, фиссур, режущего края, слепых ямок и т. д. Долговечность, функциональность, защита пародонта от пищевого комка и эстетика реставрации обеспечивается качественно проведенным анатомическим контурированием. Этап проводится с помощью твердосплавных боров и дисков.

Работать на границе пломбировочного материала и эмали зуба, не повреждая при этом эмаль, можно только борами с 30 лезвиями. При работе алмазными борами даже мелкой дисперсности происходит удаление значительного слоя эмали.

IV этап - окончательное полирование реставрации — удаление шероховатостей с поверхности реставрации. От качества этого этапа зависит цветостабильность реставрации, степень адгезии зубного налета и зубного камня, а также «сухой» блеск поверхности. Для работы на данном этапе применяют резиновые и силиконовые головки, полировочные диски, а также 30-гранные боры.

Окончательная обработка и полировка пломб

1. Моделировка амальгамы (карвинг) заключается в создании окончательной формы пломбы. Грубая моделировка производится плотным ватным тампоном, при этом удаляются избытки амальгамы, особенно жидкой у $_2$ фазы. Специальными инструментами (карверами) или экскаватором снимается тонкий слой материала на поверхности зуба у края пломбы и формируются борозды на поверхности пломбы. Если эта тонкая моделировка не произведена, то наслоившаяся на поверхность зуба амальгама отламывается от основной массы, и между зубом и пломбой обозначается резкая ступень.

Блеснение пломбы проводятся через 3-5 мин в стадии первичного твердения, и заключается в легком заглаживании гладким инструментом (напри-

мер, круглоголовчатым штопфером) смоделированной поверхности. В результате этого уменьшается микропорозность поверхностного слоя амальгамы, улучшается адаптация края пломбы к краю полости, уменьшается микрощель.

Шлифовка и полировка производится как минимум через 24 часа. Грубую полировку проводят финиром или карборундовой головкой, двигаясь от края зуба к центру пломбы и избегая перегрева. Полировка проводится щетками, деревянными палочками с полировочной пастой, резиновыми головками с абразивами: шлифовальными Политип-Ф, полировочными Политип-П.

- 2. Окончательная обработка композиционных пломбировочных материалов разделена на стадии:
 - -удаление избытка материала и краевое финирование пломбы;
 - -обработка (контурирование) пломбы;
 - -полирование пастами.

Удаление избытка материала проводится алмазными турбинными борами. После этого поверхность пломбы сглаживается специальными алмазными финирами (финишными борами), которыми можно также создать ямки, бугры, фиссуры. Рекомендуется при обработке поверхности пломб, граничащей с эмалью, пользоваться карбидными борами или алмазными финишными борами с белой полосой, которые обрабатывают композит и при этом скользят по поверхности эмали, не повреждая её.

С помощью полировочных пластиковых или резиновых дисков и головок поверхность выравнивается, сглаживается. Обработка проводится без оказания значительного давления на поверхность пломбы, поскольку можно нарушить созданный рельеф, перегреть пульпу. Для этого поверхность пломбы обрабатывают прерывистыми движениями, периодически увлажняя водой.

Полирование проводится специальными губками и полировочными пастами для грубой и окончательной обработки. Полировка проводится при небольших оборотах, периодически смачивая обрабатываемую поверхность водой в течение 60 сек.

Задания для уяснения темы занятия, методики, вида деятельности Контрольные вопросы:

- 1. Цели и задачи завершающего этапа реставрации.
- 2. Критерии качества проведенной финишной обработки.
- 3. Последовательность проведения окончательной обработки пломб.
- 4. Особенность окончательной обработки пломб из цементов.
- 5. Особенность окончательной обработки пломб из амальгамы.
- 6. Особенность окончательной обработки пломб из композитов.

Тестовые задания:

- 1. Финишная обработка реставрации необходима для:
- а) удаления избытков композита
- б) воссоздания анатомической формы зуба
- в) полирования поверхности реставрации
- г) оптимальной адаптации пломбировочного материала к тканям зуба
- д) все верно

- 2. Инструменты для предварительной обработки реставраций:
- а) тонкодисперсные алмазные боры
- б) финиры
- в) резиновые полиры
- г) щеточки
- д) карборундовые камни
- 3. Инструменты для окончательной обработки реставраций:
- а) тонкодисперсные алмазные боры
- б) финиры
- в) резиновые полиры
- г) щеточки
- д) крупнозернистые штрипсы
- 4. Окончательное полирование реставрации вращающимися инструментами определяет:
- а) устранение постоперативной чувствительности
- б) цветостойкость
- в) снижение полимеризационной усадки
- г) степень адгезии зубного налета
- 5. Штрипсы применяются для пришлифовывания:
- а) оральной и вестибулярной поверхностей
- б) апроксимальных поверхностей
- в) окклюзионных поверхностей
- 6. Восстановление окклюзионных отношений проводится с помощью:
- а) тонкодисперсных алмазных боров
- б) крупнодисперсных алмазных боров
- в) резиновых полиров
- г) финиров
- д) крупнозернистых полировочных полосок
- 7. Для длительного функционирования реставраиця должна быть выведена из контакта с зубами-антагонистами
- а) да
- б) нет
- 8. Для удаления избытков композита в интерпроксимальной области применяют:
- а) крупнозернистые штрипсы
- б) тонкие фиссурные алмазные боры
- в) тонкие твердосплавные боры
- г) диски
- 9. Анатомическая форма зуба воссоздается в большей степени:
- а) на этапах пломбирования
- б) на этапе окончательной обработки
- 10. При удалении избытков композита в межзубном промежутке могут возникнуть:
- а) повреждение десневого сосочка
- б) повреждение рядом стоящего зуба

- в) сошлифовывание восстановленного экватора зуба
- г) чрезмерное удаление композита
- д) верно все перечисленное

Ситуационные задачи:

- 1. Пациенту С. проведено восстановление дефекта на окклюзионномедиальной поверхности 25 зуба композитным материалом светового отверждения. Отмечается избыток материала в межзубном промежутке.
 - 1. Классифицировать кариозную полость по Блэку.
 - 2. Принципы удаления композита из межзубного промежутка.
 - 3. Пути предупреждения образования нависающего края реставрации.
 - 4. Какие инструменты понадобятся для финишной обработки?
- 2. Пациенту В. светоотверждаемым композитом реставрирован дефект 44 зуба, локализованный на вестибулярной поверхности в пришеечной области.
 - 1. Классифицировать кариозную полость по Блэку.
 - 2. Обосновать необходимость окончательной обработки реставрации.
 - 3. Перечислить инструменты для шлифования и полирования реставрации.

Список тем УИРС:

1. Теоретические основы и правила проведения заключительного этапа реставрации.

Тема №19: ПОНЯТИЕ О КАРИЕСЕ ЗУБОВ. КЛАССИФИКАЦИЯ КАРИОЗНЫХ ПОЛОСТЕЙ ПО БЛЭКУ, АТИПИЧНЫЕ КАРИОЗНЫЕ ПОЛОСТИ.

Значение изучения темы:

Кариес зубов является наиболее распространенным заболеванием человека. Поражаемость достигает 95–98 %. Кариес является актуальной проблемой в стоматологии, весьма интересной в теоретическом и исключительно важной в практическом отношении. Прогрессирующее поражение твердых тканей зуба, осложняющееся воспалением пульпы и околоверхушечных тканей, нередко приводит к утрате зубов.

Цели занятия: на основе теоретических знаний об этиологии и клинике кариеса зубов студент должен

- -знать этиологию, клинику кариеса зубов, классификацию кариозных полостей по Блэку;
- -уметь определять принадлежность кариозной полости к классу по Блэку;
- -иметь навыки работы со стоматологическим инструментарием
- иметь представление о патогенезе кариеса зубов.

План изучения темы:

- 1. Контроль исходных знаний:
- 2. Самостоятельная работа:
- работа с муляжами зубов и фантомами
- решение ситуационных задач.
- 3. Подведение итогов:
- тестовый контроль.

Основные понятия и положения темы:

Кариес зубов—патологический процесс, проявляющийся после прорезывания зубов, при котором происходят деминерализация и размягчение твердых тканей зуба с последующим образованием дефекта в виде полости.

Процесс возникновения кариеса начинается на границе взаимодействия среды полости рта с поверхностным слоем эмали. Низкомолекулярные углеводы, например, сахароза, которые потребляются как продукт питания, подвергаются переработке бактериями, находящимися в полости рта. Как следствие образуются органические кислоты: лактат, пируват и т.д., что приводит к снижению рН в бактериальном налете. Кислая среда приводит к деминерализации эмали с вымыванием ионов Са и Р из кристаллов гидроксиапатита. При этом за счет буферной емкости слюны происходит постепенная нейтрализация кислот и запускается обратный транспорт ионов в эмаль, где при наличии фторидов наблюдается образование фторапатита (реминерализация). Таким образом этот динамический процесс, при котором чередуются фазы де- и реминерализации. Уже через 1-2 минуты после приема сахара рН опускается ниже критического значения 5,5 и происходит включение процесса деминерализации. Этот период длится до 30 минут, как период метаболизации субстрата. Затем рН снова поднимается до уровня 6,8 (Кривая Стефана). При изменении общего состояния организма и создания кариесогенной ситуации в полости рта процессы деминерализации начинают преобладать и на поверхности эмали развивается патологический очаг, так называемый кариес в стадии "белого пятна". В этом очаге выделяется несколько зон:

- 1. Интактный поверхностный слой (видимая интактная поверхность). Диаметр кристаллов гидроксиапатита \approx 20-50 нм. Зона реминерализации (гиперминерализации).
- 2. Центр поражения. Зона деминерализации. Диаметр кристаллов гидроксиапатита \approx 10-30 нм. Резко снижена твердость эмали.
- 3. Зона потемнения. Диаметр кристаллов гидроксиапатита ≈50-100 нм. Тверже, чем здоровая эмаль. Зона реминерализации.
- 4. Прозрачная зона. Диаметр кристаллов гидроксиапатита \approx 40 нм. Зона деминерализации.

До тех пор пока поверхностный слой не нарушен, возможно практически полное восстановление структуры эмали, за исключением некоторых отличий: кристаллы имеют более крупный размер, закрытые поры, отличие в цвете и транспарентности. При дальнейшем прогрессировании кариозного процесса деструкция достигает эмалево-дентинного соединения и подлежащих слоев дентина. Следует отметить, что разрушение и размягчение дентина происходит вдоль эмалево-дентинного соединения и вглубь по ходу дентинных канальцев. В связи с эти кариозная полость имеет нависающие края. Защитным механизмом является образование заместительного дентина со стороны пульповой камеры и развитие тубулярного склероза, то есть облитерации дентинных канальцев. В дентине также выделяют несколько зон поражения:

• зона распада и размягчения (максимальная обсемененность бактериями)

- зона пограничной обсемененности (незначительно выражено растворение ткани и наблюдается снижение количества бактерий)
- зона потемнения (опустевшие дентинные канальцы и нет бактерий)
- прозрачная зона (зона склероза дентинных канальцев, нет бактерий)
- зона нормального дентина (нет бактерий)
- зона иррегулярного или заместительного дентина (нет бактерий) Кариес должен удаляться до прозрачной зоны. Клинически она характеризуется соответствующим блеском и жесткостью, которая исследуется стоматологическим зондом (при трении кончиком зонда слышится характерный

звук). При цветущем, быстро прогрессирующем кариесе, прозрачная зона не успевает формироваться.

При начальном кариесе могут иметь место жалобы на чувство оскомины. На холодовой раздражитель, как и на действие химических агентов (кислое, сладкое), пораженный зуб не реагирует. Деминерализация эмали при осмотре проявляется изменением ее нормального цвета на ограниченном участке и появлением матового, белого, светло-коричневого, темно-коричневого пятен с черным оттенком. Процесс начинается с потери блеска эмали на ограниченном участке. Обычно, это происходит у шейки зуба рядом с десной. Поверхность пятна гладкая, острие зонда по ней скользит. Пятно окрашивается раствором метиленового синего.

Поверхностный кариес обнаруживается в пределах эмали, обычно круглой формы. При хроническом течении его края пологие, при остром - отвесные. Воздействие холодового и химических раздражителей нередко болезненно. При трансиллюминации всегда выявляется дефект эмали, даже "скрытый". В инфракрасных лучах отчетливо видна тень. При этой локализации может иметь место застревание пищи и признаки папиллита.

Средний кариес захватывает эмаль и дентин. При зондировании выявляется плотное дно и стенки полости, широкое входное отверстие (при хроническом течении), либо в различной степени размягченные стенки и дно полости, ее подрытые края, образованные хрупкой эмалью (при острых формах). Может наблюдаться кратковременная реакция на действие холодного и химических раздражителей.

Глубокий кариес отличается выраженным разрушением твердых тканей зуба с формированием обширной полости, отделенной от пульпы тонким слоем дентина. Этой стадии кариозного процесса свойственны острые кратковременные боли от температурных, химических, и механических раздражителей, после устранения которых боль исчезает. Острое течение глубокого кариеса характеризуется наличием депигментированного дентина, легко снимающегося пластами с помощью инструмента. Дно такой полости иногда в отдельных точках болезненно.

Классификация кариозных полостей по Блэку (1889г.).

I класс кариес естественных фиссур и углублений эмали любой группы зубов (C.fissurum).

II класс кариес контактных поверхностей моляров и премоляров (C.aproximales).

III класс кариес контактных поверхностей резцов и клыков без нарушения целостности режущего края (C.aproximales).

IV класс кариес контактных поверхностей резцов и клыков с нарушением целостности режущего края или угла коронки зуба (C.aproximales).

V класс кариес пришеечной области всех групп зубов (c.cervicales)

Американские стоматологи предлагают выделить ещё один класс:

VI класс полости располагаются на режущем крае передних зубов и вершинах бугров боковых зубов.

Развитие и распространение кариозного процесса в зубе в зависимости от гистологических особенностей эмали и дентина.

Наиболее часто кариес возникает в глубине фиссур моляров. В эмали жевательной поверхности кариес развивается в глубину в форме треугольника с вершиной в точке возникновения. В связи с этим дефект разрушения на поверхности долгое время может оставаться незаметным, несмотря на то, что поражение глубоких слоев может быть значительным.

В дентине, вследствие большого содержания органических веществ по сравнению с эмалью, кариес распространяется активнее не только в глубину, но и в стороны, особенно в области дентино-эмалевого соединения. В связи с этим возникают подрытые края эмали, не имеющие под собой опоры дентина.

Распространение кариеса в дентине в глубину происходит также в форме треугольника, но с вершиной, направленной в сторону пульпы зуба.

На контактных (боковых) поверхностях зубов кариес возникает чаще всего под контактным пунктом. Так же как и на жевательной поверхности, в полостях II класса кариес распространяется в виде двух конусов с основанием на дентино-эмалевом соединении. Однако характер направления эмалевых призм определяет более широкое входное отверстие. Подрытые края эмали наиболее выражены в направлении жевательной поверхности и режущего края. Распространению кариеса в стороны препятствуют более массивные и кариес-резистентные боковые грани коронки зуба. Кариес на контактных поверхностях имеет тенденцию к распространению в пришеечную область коронки. Небольшие кариозные полости II класса в некоторых случаях представляют трудности для выявления и дифференцирования ввиду их скрытой локализации.

В области шеек зубов кариес возникает преимущественно на вестибулярной поверхности. Его развитие в зубах постоянного прикуса происходит в придесневой области до боковых граней зуба.

Задания на уяснение темы занятия, методики вида деятельности. Контрольные вопросы

- 1. Дайте определение кариесу зубов.
- 2. Каковы основные причины развития кариеса зубов?
- 3. Как распространяется кариес в эмали зуба?
- 4. Как распространяется кариес в дентине зуба?
- 5. Какие полости относятся к 1 классу по классификации Блэка?
- 6. Какие полости относятся ко 2 классу по классификации Блэка?
- 7. Какие полости относятся к 3 классу по классификации Блэка?

- 8. Какие полости относятся к 4 классу по классификации Блэка?
- 9. Какие полости относятся к 5 классу по классификации Блэка?
- 10. Какие кариозные полости называют атипичными?

Ситуационные задачи по теме

1. Пациент А., 30 лет, обратился к врачу-стоматологу с жалобами на быстропроходящую боль от сладкого в 25, боль появилась месяц назад.

Объективно: На жевательной поверхности 25 кариозная полость в пределах эмали, зондирование безболезненное, реакция на холод безболезненная.

Определите класс кариозной полости.

Какие пломбировочные материалы лучше использовать?

2. Больной К., 23 года, обратился с жалобами на ноющие кратковременные боли от температурных раздражителей в 16. При осмотре на коронке видимых кариозных полостей не наблюдается, при орошении зуба холодной водой отмечается кратковременная боль.

На внутриротовой рентгенограмме на дистальной поверхности в пришеечной области отмечается кариозная полость в пределах средних слоев дентина.

Определите класс кариозной полости.

Какие пломбировочные материалы целесообразно использовать для лечения?

Тестовые задания по теме.

- 1. Кариесоиммунные зоны зуба
- а) контактный пункт
- б) пришеечная область
- в) апроксимальная поверхность
- г) бугры и режущий край
- д) фиссуры
- 2. В возникновении кариеса зубов ведущую роль играют микроорганизмы
- а) стрептококки
- б) стафилококки
- в) фузобактерии
- г) грибы рода Кандида
- д) актиномицеты
- 3. Наиболее кариесогенный углевод
- а) галактоза
- б) сахароза
- в) фруктоза
- г) мальтоза
- д) крахмал
- 4. При прогрессирующей деминерализации эмаль имеет оттенок
- а) мраморный
- б) розовый
- в) пигментированный
- г) светлый
- д) желтый
- 5. При замедлении процесса деминерализации эмаль имеет оттенок

- а) мраморный
- б) розовый
- в) пигментированный
- г) светлый
- д) желтый
- 6. Очаг деминерализации клинически проявляется
- а) появление дефекта эмали (полости)
- б) снижение чувствительности к раздражителям
- в) гиперестезия
- г) появление подвижности зуба
- д) клинически очаг не проявляется
- 7. Признаки характерные для кариеса в стадии пятна
- а) эмаль гладкая, блестящая, безболезненная
- б) эмаль гладкая, тусклая, безболезненная
- в) полость в пределах эмали
- г) полость в пределах плащевого дентина
- д) полость в глубоких слоях дентина
- 8. К образованию кариозного дефекта приводит разрушение
- а) гидроксиапатита
- б) фторапатита
- в) полисахаридов
- г) белковой матрицы
- 9. Для начального кариеса характерны признаки
- а) отсутствие дефекта эмали
- б) полость в пределах эмали
- в) полость в пределах плащевого дентина
- г) полость в глубоких слоях дентина
- д) вскрыта полость зуба
- 10. Для поверхностного кариеса характерны признаки
- а) отсутствие дефекта эмали
- б) полость в пределах эмали
- в) полость в пределах плащевого дентина
- г) полость в глубоких слоях дентина
- д) вскрыта полость зуба
- 11. Для среднего кариеса характерны признаки
- а) отсутствие дефекта эмали
- б) полость в пределах эмали
- в) полость в пределах плащевого дентина
- г) полость в глубоких слоях дентина
- д) вскрыта полость зуба
- 12. Форма кариеса для которой не характерно образование дефекта эмали
- а) начальный
- б) поверхностный
- в) средний
- г) глубокий

- 13. При лечении кариеса в стадии пятна перед стоматологом стоит задача
- а) устранение неприятного запаха изо рта
- б) ликвидация очага деминерализации
- в) устранение очага инфекции
- г) устранение боли
- д) иссечение видоизмененных тканей
- 14. Процесс реминерализации при кариесе в стадии пятна происходит
- а) в поверхностном слое эмали
- б) в подповерхностном слое эмали
- в) в области эмалево-дентинного соединения
- г) в плащевом дентине
- д) в глубоких слоях дентина
- 15. Процесс восполнения эмали минералами называется
- а) деминерализация
- б) реминерализация
- в) декальцификация
- г) рекальцификация
- д) ионофорез
- 16. Процесс обеднения эмали зуба минералами называется
- а) деминерализация
- б) реминерализация
- в) декальцификация
- г) рекальцификация
- д) ионофорез
- 17. Согласно классификации блэка, кариозные полости локализующиеся на контактной поверхности моляров и премоляров относятся к
- а) І классу
- б) II классу
- в) III классу
- г) IV классу
- д) V классу
- 18. Согласно классификации блэка, кариозные полости локализующиеся на контактной поверхности резцов и клыков с разрушением режущего края относятся к
- а) І классу
- б) II классу
- в) III классу
- г) IV классу
- д) V классу

Рекомендуемые темы УИРС:

- 1. Теории кариеса зубов.
- 2. Этиология и патогенез кариеса зубов.

Литература:

- 1. 1. Максимовский, Ю.М. Фантомный курс терапевтической стоматологии: Атлас: Учебное пособие / Ю.М. Максимовский. — М.: Медицина, 2005. — 323с.
- 2. Пожарицкая М.М. Пропедевтическая стоматология: учебная литер. для студентов стом.фак. мед.вузов. М.: Медицина, 2004.-304 с.
- 3. Терапевтическая стоматология: Учебник / Ред. Е.В. Боровский. М.: ООО «Мед.информ.агентство», 2006. 840с.
- 4. Трезубов, В.Н. Стоматологический кабинет: Оборудование, материалы, инструменты: Учебное пособие / В.Н. Трезубов, Л.М. Мишнев, М.М. Соловьев и др. С-Пб.: Спец.лит., 2006- 144c.
- 5. Николаенко, С.А. Современные аспекты реставрации твердых тканей зубов: учебно-методическое пособие. СПб.: МЕДИ издательство, 2007. 64 с.